Robust Optimization for IMPT: Introducing and Comparing Different Automated Approaches | SpringerLink
Skip to main content

Robust Optimization for IMPT: Introducing and Comparing Different Automated Approaches

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

Intensity-modulated proton therapy (IMPT) is a radiotherapy treatment modality that has proven to be able to properly irradiate tumors while preserving as much as possible normal tissues. However, it is extremely vulnerable to several different sources of uncertainties, which motivates the use of robust treatment planning optimization. In this work we describe a new approach for robust automated IMPT treatment optimization, based on a set of auxiliary structures that are shifted versions of each one of the volumes of interest (clinical target volume - CTV and organs-at-risk - OARs), and that are named clones. This approach is compared with the use of a pseudo-Planning Target Volume (PTV) and pseudo-planning OAR volumes built by the union of all the CTV and OAR clones, respectively. For proof-of-concept, the proposed methodologies were tested using five post-operative prostate cancer cases. The quality of the calculated treatment plans was assessed by Monte Carlo simulation. For IMPT treatment plan robust optimization, the new strategy based on the use of clones using shifts of 6 mm presented better results in terms of robustness when compared with the traditional PTV-based approach. Taking uncertainties into consideration during the planning process can be an option to overcome one of the major drawbacks of IMPT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans, E., Staffurth, J.: Principles of cancer treatment by radiotherapy. Surg. Oxf. 36, 111–116 (2018)

    Google Scholar 

  2. Shepard, D.M., Ferris, M.C., Olivera, G.H., Mackie, T.R.: Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev. 41, 721–744 (1999)

    Article  Google Scholar 

  3. Brady, L.W., Heilmann, H.P., Molls, M.: New Technologies in Radiation Oncology. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29999-8

    Book  Google Scholar 

  4. Song, J., Shi, Z., Sun, B., Shi, L.: Treatment planning for volumetric-modulated arc therapy: Model and heuristic algorithms. IEEE Trans. Autom. Sci. Eng. 12, 116–126 (2014)

    Article  Google Scholar 

  5. Wang, F., Huang, Y.-L., Ju, F.: Simulation optimization gantry call-back control method for proton therapy systems. IEEE Trans. Autom. Sci. Eng. 20, 1565–1576 (2022)

    Article  Google Scholar 

  6. Mohan, R., Grosshans, D.: Proton therapy-present and future. Adv. Drug Deliv. Rev. 109, 26–44 (2017)

    Article  Google Scholar 

  7. ICRU, Prescibing, Recording and Reporting Proton-Beam Therapy (ICRU Report 78). J. ICRU (2007)

    Google Scholar 

  8. Dias, J., Rocha, H., Ventura, T., Ferreira, B., Lopes, M.C.: Automated fluence map optimization based on fuzzy inference systems. Med. Phys. 43, 1083–1095 (2016)

    Article  Google Scholar 

  9. Cao, W., et al.: Reflections on beam configuration optimization for intensity-modulated proton therapy. Phys. Med. Biol. 67, 13TR01 (2022)

    Google Scholar 

  10. Rocha, H., Dias, J.M., Ferreira, B.C., Lopes, M.C.: Combinatorial optimization for an improved transition from fluence optimization to fluence delivery in IMRT treatment planning. Optimization 61, 969–987 (2012)

    Article  MathSciNet  Google Scholar 

  11. Lim, G.J., Cao, W.: A two-phase method for selecting IMRT treatment beam angles: branch-and-Prune and local neighborhood search. Eur. J. Oper. Res. 217, 609–618 (2012)

    Article  MathSciNet  Google Scholar 

  12. Bertsimas, D., Cacchiani, V., Craft, D., Nohadani, O.: A hybrid approach to beam angle optimization in intensity-modulated radiation therapy. Comput. Oper. Res. 40, 2187–2197 (2013)

    Article  MathSciNet  Google Scholar 

  13. Rocha, H., Dias, J.M., Ferreira, B.C., Lopes, M.C.: Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework. J. Glob. Optim. 57, 1065–1089 (2013)

    Article  MathSciNet  Google Scholar 

  14. Dias, J., Rocha, H., Ferreira, B., Lopes, M.C.: A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization. Cent. Eur. J. Oper. Res. 22, 431–455 (2014)

    Article  MathSciNet  Google Scholar 

  15. Lim, G.J., Kardar, L., Cao, W.: A hybrid framework for optimizing beam angles in radiation therapy planning. Ann. Oper. Res. 217, 357–383 (2014)

    Article  MathSciNet  Google Scholar 

  16. Rocha, H., Dias, J.M., Ventura, T., Ferreira, B.C., Lopes, M.C.: Beam angle optimization in IMRT: are we really optimizing what matters? Int. Trans. Oper. Res. 26, 908–928 (2019)

    Article  MathSciNet  Google Scholar 

  17. Gutierrez, M., Cabrera-Guerrero, G., Lagos, C.: A Reduced Variable Neighbourhood Search for the Beam Angle Optimisation Problem. IEEE Trans. Emerg. Top. Comput. Intell. 7, 1499–1510 (2023)

    Article  Google Scholar 

  18. Chan, T.C., Craig, T., Lee, T., Sharpe, M.B.: Generalized inverse multiobjective optimization with application to cancer therapy. Oper. Res. 62, 680–695 (2014)

    Article  MathSciNet  Google Scholar 

  19. Wedenberg, M., Beltran, C., Mairani, A., Alber, M.: Advanced treatment planning. Med. Phys. 45, e1011–e1023 (2018)

    Article  Google Scholar 

  20. Unkelbach, J., Paganetti, H.: Robust proton treatment planning: physical and biological optimization. Semin. Radiat. Oncol. 28, 88–96 (2018)

    Article  Google Scholar 

  21. McGowan, S.E., Burnet, N.G., Lomax, A.J.: Treatment planning optimisation in proton therapy. Br. J. Radiol. 86, 20120288–20120288 (2013)

    Article  Google Scholar 

  22. Wahl, N., Hennig, P., Wieser, H.P., Bangert, M.: Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy. Phys. Med. Biol. 62, 5790 (2017)

    Article  Google Scholar 

  23. Wahl, N., Hennig, P., Wieser, H.-P., Bangert, M.: Analytical incorporation of fractionation effects in probabilistic treatment planning for intensity-modulated proton therapy. Med. Phys. 45, 1317–1328 (2018)

    Article  Google Scholar 

  24. Liu, W., et al.: Effectiveness of robust optimization in intensity-modulated proton therapy planning for head and neck cancers. Med. Phys. 40, 051711 (2013)

    Article  Google Scholar 

  25. Zaghian, M., Cao, W., Liu, W., Kardar, L., Randeniya, S., Mohan, R., Lim, G.: Comparison of linear and nonlinear programming approaches for “worst case dose” and “minmax” robust optimization of intensity-modulated proton therapy dose distributions. J. Appl. Clin. Med. Phys. 18, 15–25 (2017)

    Google Scholar 

  26. Khoo, E.L., et al.: Prostate contouring variation: can it be fixed? Int. J. Radiat. Oncol. Biol. Phys. 82, 1923–1929 (2012)

    Article  Google Scholar 

  27. Unkelbach, J., et al.: Robust radiotherapy planning. Phys. Med. Biol. 63, 22TR02 (2018)

    Google Scholar 

  28. Liu, W., Zhang, X., Li, Y., Mohan, R.: Robust optimization of intensity modulated proton therapy. Med. Phys. 39, 1079–1091 (2012)

    Article  Google Scholar 

  29. Mohan, R., Das, I.J., Ling, C.C.: Empowering intensity modulated proton therapy through physics and technology: an overview. Int. J. Radiat. Oncol. Biol. Phys. 99, 304–316 (2017)

    Article  Google Scholar 

  30. Fredriksson, A., Forsgren, A., Hardemark, B.: Minimax optimization for handling range and setup uncertainties in proton therapy. Med. Phys. 38, 1672–1684 (2011)

    Article  Google Scholar 

  31. Wieser, H.P., et al.: Development of the open-source dose calculation and optimization toolkit matRad. Med. Phys. 44, 2556–2568 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by the Fundação para a Ciëncia e a Tecnologia (FCT) under project grants UTA-EXPL/FMT/0079/2019, UIDB/00645/2020, UIDB/00308/2020 and UIDB/05037/2020 with DOI 10.54499/ UIDB/05037/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neves, J., Rocha, H., Ferreira, B., Dias, J. (2024). Robust Optimization for IMPT: Introducing and Comparing Different Automated Approaches. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14816. Springer, Cham. https://doi.org/10.1007/978-3-031-65223-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65223-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65222-6

  • Online ISBN: 978-3-031-65223-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics