GPACDA – circRNA-Disease Association Prediction with Generating Polynomials | SpringerLink
Skip to main content

GPACDA – circRNA-Disease Association Prediction with Generating Polynomials

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2024)

Abstract

Circular RNA, a molecule with partially understood functions, has been implicated in various diseases. Therefore, there is a vast effort to predict associations between circular RNAs and diseases. In our recent study, we introduced circGPA, an algorithm that enables the annotation of circular RNAs with gene ontology terms through interactions with miRNAs and mRNAs. Recognizing the analytical similarity in predicting disease associations, we developed GPACDA, an extension of circGPA tailored for disease associations. The benefits of our methods include explainability, as the outputs are based on known interactions and associations, as well as the rigorous calculation of the p-value, which the circGPA algorithm can compute. We compared our method with two other tools, NCPCDA and DWNCPCDA, using a subset of the CDASOR dataset and showed that GPACDA overcomes its competitors in terms of true association ranks. Our method’s code and predictions are publicly accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beau, M.M., et al.: Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood 88(6) (1996)

    Google Scholar 

  2. Bekker, J., et al.: Learning from positive and unlabeled data: a survey. ML (2020)

    Google Scholar 

  3. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. JRSS. Series B 57(1) (1995)

    Google Scholar 

  4. Cardenas, J., et al.: Cerina: systematic circRNA functional annotation based on integrative analysis of ceRNA interactions. Sci. Rep. 10(1) (2020)

    Google Scholar 

  5. Chen, Y., et al.: Deep learning models for disease-associated circRNA prediction: a review. Brief. Bioinform. 23(6) (2022)

    Google Scholar 

  6. Deepthi, K., Jereesh, A.: An ensemble approach for circrna-disease association prediction based on autoencoder and deep neural network. Gene 762 (2020)

    Google Scholar 

  7. Dong, R., et al.: CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. GPB 16(4) (2018)

    Google Scholar 

  8. Dudekula, D.B., et al.: CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 13(1) (2016)

    Google Scholar 

  9. Dunn, O.J.: Multiple comparisons among means. JASA 56(293) (1961)

    Google Scholar 

  10. Ebner, J., et al.: Abcc1 and glutathione metabolism limit the efficacy of bcl-2 inhibitors in acute myeloid leukemia. Nat. Commun. 14(1) (2023)

    Google Scholar 

  11. Feller, W.: Introduction to probability theory and its applications (1966)

    Google Scholar 

  12. Franzini, A., et al.: Molecular alterations in chronic myelomonocytic leukemia monocytes: transcriptional and methylation profiling. Blood 132 (2018)

    Google Scholar 

  13. Gorombei, P., et al.: BCL-2 inhibitor ABT-737 effectively targets leukemia-initiating cells with differential regulation of relevant genes leading to extended survival in a NRAS/BCL-2 mouse model of high risk-MDS. IJMS 22(19) (2021)

    Google Scholar 

  14. Guinn, B., et al.: Humoral detection of leukaemia-associated antigens in presentation acute myeloid leukaemia. BBRC 335(4) (2005)

    Google Scholar 

  15. Guo, Y., Yi, M.: THGNCDA: circRNA-disease association prediction based on triple heterogeneous graph network. Brief. Funct. Genom. (2023)

    Google Scholar 

  16. Hsu, S.D., et al.: miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 39(suppl_1) (2010)

    Google Scholar 

  17. Huang, Z., et al.: HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 47(D1) (2018)

    Google Scholar 

  18. Hussein, K., et al.: Profile of fibrosis-related gene transcripts and megakaryocytic changes in the bone marrow of myelodysplastic syndromes with fibrosis. Ann. Hematol. 97 (2018)

    Google Scholar 

  19. Jiang, Q., et al.: miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37(suppl_1) (2008)

    Google Scholar 

  20. Karagkouni, D., et al.: DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. NAR 46(D1) (2017)

    Google Scholar 

  21. Kumar, B., et al.: Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia 32(3) (2018)

    Google Scholar 

  22. Lan, W., et al.: Benchmarking of computational methods for predicting circRNA-disease associations. Brief. Bioinform. 24(1) (01 2023)

    Google Scholar 

  23. Lei, X., et al.: Predicting circRNA-disease associations based on improved collaboration filtering recommendation system with multiple data. Front. Genet. (2019)

    Google Scholar 

  24. Lei, X., et al.: PWCDA: path weighted method for predicting circRNA-disease associations. Int. J. Mol. Sci. 19(11) (2018)

    Google Scholar 

  25. Lewis, B.P., et al.: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell 120(1) (2005)

    Google Scholar 

  26. Li, G., et al.: NCPCDA: network consistency projection for circRNA–disease association prediction. RSC Adv. 9(57) (2019)

    Google Scholar 

  27. Li, G., et al.: Potential circRNA-disease association prediction using DeepWalk and network consistency projection. J. Biomed. Inform. 112 (2020)

    Google Scholar 

  28. Li, S., et al.: Expression profile and bioinformatics analysis of circular RNAs in acute ischemic stroke in a South Chinese Han population. Sci. Rep. 10(1) (2020)

    Google Scholar 

  29. Liang, S., et al.: HMCDA: a novel method based on the heterogeneous graph neural network and metapath for circrna-disease associations prediction. BMC Bioinform. 24(1) (2023)

    Google Scholar 

  30. Liu, F., et al.: Slc25a1-associated prognostic signature predicts poor survival in acute myeloid leukemia patients. Front. Genet. 13 (2023)

    Google Scholar 

  31. Liu, L., et al.: Mutated genes and driver pathways involved in myelodysplastic syndromes - a transcriptome sequencing based approach. Mol. BioSyst. 11 (2015)

    Google Scholar 

  32. Lu, C., et al.: Improving circRNA-disease association prediction by sequence and ontology representations with convolutional and recurrent neural networks. Bioinformatics 36(24) (2020)

    Google Scholar 

  33. Ma, Y., et al.: The expression of beta-tubulin gene in myelodysplastic syndrome evoluting to leukemia. Zhonghua nei ke za zhi 55(5) (2016)

    Google Scholar 

  34. Ma, Y., et al.: Prospective nested case–control study of feature genes related to leukemic evolution of myelodysplastic syndrome. Mol. Bio. Rep. 40(1) (2013)

    Google Scholar 

  35. Manukjan, G., et al.: GaBP is necessary for stem/progenitor cell maintenance and myeloid differentiation in human hematopoiesis and chronic myeloid leukemia. Stem Cell Res. 16(3) (2016)

    Google Scholar 

  36. Mo, G., et al.: Diagnostic approach to the evaluation of myeloid malignancies following car t-cell therapy in b-cell acute lymphoblastic leukemia. JITC 8(2) (2020)

    Google Scholar 

  37. Naudin, C., et al.: PUMILIO/FOXP1 signaling drives expansion of hematopoietic stem/progenitor and leukemia cells. Blood 129(18) (2017)

    Google Scholar 

  38. Oliver, S.: Guilt-by-association goes global. Nature 403(6770) (2000)

    Google Scholar 

  39. Osborne, J.D., et al.: Annotating the human genome with disease ontology. BMC Genom. 10(1) (2009)

    Google Scholar 

  40. Panda, A.C.: Circular RNAs act as miRNA sponges. In: Xiao, J. (ed.) Circular RNAs. Advances in Experimental Medicine and Biology, vol. 1087, pp. 67–79. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1426-1_6

    Chapter  Google Scholar 

  41. Peng, L., et al.: Predicting circrna-disease associations via feature convolution learning with heterogeneous graph attention network. IEEE JBHI 27(6) (2023)

    Google Scholar 

  42. Piñero, J., et al.: DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015 (2015)

    Google Scholar 

  43. Qu, S., et al.: Circular RNA: a new star of noncoding RNAs. Cancer Lett. (2015)

    Google Scholar 

  44. Ru, Y., et al.: The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res. 42(17) (2014)

    Google Scholar 

  45. Ryšavý, P., Kléma, J., Merkerová, M.D.: circGPA: circRNA functional annotation based on probability-generating functions. BMC Bioinform. 23(1) (Sep 2022)

    Google Scholar 

  46. Shi, J.l., et al.: High expression of inositol 1, 4, 5-trisphosphate receptor, type 2 (itpr2) as a novel biomarker for worse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget 6(7) (2015)

    Google Scholar 

  47. Sweetser, D.A., et al.: Delineation of the minimal commonly deleted segment and identification of candidate tumor-suppressor genes in del(9q) acute myeloid leukemia. Genes Chromosomes Cancer 44(3) (2005)

    Google Scholar 

  48. Szakács, G., et al.: Targeting multidrug resistance in cancer. NRDD 5(3) (2006)

    Google Scholar 

  49. Trsova, I., et al.: Expression of circular RNAs in myelodysplastic neoplasms and their association with mutations in the splicing factor gene sf3b1. Mol. Oncol. (2023)

    Google Scholar 

  50. Verduci, L., et al.: CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Disease 12(5) (2021)

    Google Scholar 

  51. Visconte, V., et al.: Splicing factor 3b subunit 1 (sf3b1) heterozygous mice manifest a hematologic phenotype similar to low risk myelodysplastic syndromes with ring sideroblasts. Blood 122(21) (2013)

    Google Scholar 

  52. Vromman, M., et al.: Closing the circle: current state and perspectives of circular RNA databases. Brief. Bioinform. 22(1) (2020)

    Google Scholar 

  53. Wang, L., et al.: MGRCDA: metagraph recommendation method for predicting circRNA-disease association. IEEE Trans. Cybern. (2021)

    Google Scholar 

  54. Wang, L., et al.: A machine learning framework based on multi-source feature fusion for circRNA-disease association prediction. Brief. Bioinform. 23(5) (2022)

    Google Scholar 

  55. Wu, Q., et al.: MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction. Brief. Bioinform. 23(5) (2022)

    Google Scholar 

  56. Wu, W., et al.: Characterization of bone marrow heterogeneity in nk-aml (m4/m5) based on single-cell RNA sequencing. Exp. Hematol. Oncol. 12(1) (2023)

    Google Scholar 

  57. Xiao, F., et al.: miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 37(suppl_1) (2008)

    Google Scholar 

  58. Yao, D., et al.: Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease. Sci. Rep. 8(1) (2018)

    Google Scholar 

  59. Zhang, H.Y., et al.: iGRLCDA: identifying circRNA-disease association based on graph representation learning. Brief. Bioinform. 23(3) (2022)

    Google Scholar 

  60. Zhao, Q., et al.: Integrating bipartite network projection and KATZ measure to identify novel circRNA-disease associations. IEEE TNB 18(4) (2019)

    Google Scholar 

  61. Zheng, K., et al.: iCDA-CGR: identification of circRNA-disease associations based on chaos game representation. PLOS Comput. Biol. 16(5) (2020)

    Google Scholar 

  62. Zhu, L., et al.: Thbs1 is a novel serum prognostic factors of acute myeloid leukemia. Front. Oncol. 9 (2020)

    Google Scholar 

  63. Šimoničová, K., et al.: Different mechanisms of drug resistance to hypomethylating agents in the treatment of myelodysplastic syndromes and acute myeloid leukemia. Drug Resistance Updates 61 (2022)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Health of the Czech Republic - Czech Health Research Council, grant AZV NU20-03-00412.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Ryšavý .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ryšavý, P., Kléma, J., Merkerová, M.D. (2024). GPACDA – circRNA-Disease Association Prediction with Generating Polynomials. In: Rojas, I., Ortuño, F., Rojas, F., Herrera, L.J., Valenzuela, O. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2024. Lecture Notes in Computer Science(), vol 14848. Springer, Cham. https://doi.org/10.1007/978-3-031-64629-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64629-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64628-7

  • Online ISBN: 978-3-031-64629-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics