Refining Gene Selection and Outlier Detection in Glioblastoma Based on a Consensus Approach for Regularized Survival Models | SpringerLink
Skip to main content

Refining Gene Selection and Outlier Detection in Glioblastoma Based on a Consensus Approach for Regularized Survival Models

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2024)

Abstract

Glioblastoma, the most malignant brain cancer in adults, exhibits vast heterogeneities in prognosis, clinicopathological features, immune landscapes, and immunotherapeutic responses, which calls the need to develop personalized therapeutic approaches. The identification of long/ short-term survivors, along with their associated gene expression markers, opens promising avenues for tailored treatments. However, modeling omics data is particularly challenging due to its high-dimensionality. Our study aimed to create survival models using gene expression data retrieved from tumour tissue, with the goal of detecting outlier observations. These observations correspond to glioblastoma patients whose survival time is much greater/smaller than predicted. To assist in dimensionality reduction and select relevant genes, elastic net and network-based regularization were applied. For each method, different outlier observations were obtained. The rank product test was used as a consensus method, enabling the identification of observations whose martingale residuals were consistently large across different models, thus producing a consensual list of outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barlow, W., Prentice, R.: Residuals for relative risk regression. Biometrika 75 (1988)

    Google Scholar 

  2. Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22, 725–730 (1950)

    Article  Google Scholar 

  3. Breitling, R., Armengaud, P., Amtmann, A., Herzyk, P.: Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 573(1), 83–92 (2004)

    Article  Google Scholar 

  4. Brennan, C.W., et al.: The somatic genomic landscape of glioblastoma. Cell 155(2), 462–77 (2013)

    Article  Google Scholar 

  5. Bühlmann, P., Van De Geer, S.: Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Series in Statistics, Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20192-9

    Book  Google Scholar 

  6. Carrasquinha, E., Veríssimo, A., Lopes, M.B., Vinga, S.: Identification of influential observations in high-dimensional cancer survival data through the rank product test. BioData Min. 11(1), 1 (2018)

    Article  Google Scholar 

  7. Chen, H.C., Kodell, R.L., Cheng, K.F., Chen, J.J.: Assessment of performance of survival prediction models for cancer prognosis. BMC Med. Res. Methodol. 12(1), 102 (2012)

    Article  Google Scholar 

  8. Cho, S.Y., Oh, Y., Jeong, E.M., et al.: Amplification of transglutaminase 2 enhances tumor-promoting inflammation in gastric cancers. Exp. Mol. Med. 52, 854–864 (2020)

    Article  Google Scholar 

  9. Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc. Ser. B (Methodol.) 34(2), 187–220 (1972)

    Google Scholar 

  10. Cui, C., Liu, Y., Gerloff, D., et al.: Nop10 predicts lung cancer prognosis and its associated small nucleolar RNAs drive proliferation and migration. Oncogene 40, 909–921 (2021)

    Article  Google Scholar 

  11. Grambsch, P.M., Therneau, T.M.: Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81(3), 515–526 (1994)

    Article  MathSciNet  Google Scholar 

  12. Harrell, F.E., Jr., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.: Evaluating the yield of medical tests. JAMA 247(18), 2543–2546 (1982)

    Article  Google Scholar 

  13. Heskes, T., Eisinga, R., Breitling, R.: A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments (2014)

    Google Scholar 

  14. Inda, M.D.M., Bonavia, R., Seoane, J.: Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers 6(1), 226–239 (2014)

    Article  Google Scholar 

  15. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

    Article  Google Scholar 

  16. Johansen Taber, K.A., Dickinson, B.D., Wilson, M.: The promise and challenges of next-generation genome sequencing for clinical care. JAMA Intern. Med. 174(2), 275–280 (2014)

    Article  Google Scholar 

  17. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958)

    Article  MathSciNet  Google Scholar 

  18. Lopes, M.B., Vinga, S.: Tracking intratumoral heterogeneity in glioblastoma via regularized classification of single-cell RNA-seq data 21(1), 59 (2020)

    Google Scholar 

  19. Louis, D.N., et al.: The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 23, 1231–1251 (2021)

    Article  Google Scholar 

  20. Mantel, N.: Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50(3), 163–170 (1966)

    Google Scholar 

  21. Mendonça, M.L., et al.: Updating TCGA glioma classification through integration of molecular profiling data following the 2016 and 2021 WHO guidelines. bioRxiv (2023)

    Google Scholar 

  22. Ozturk, K., Dow, M., Carlin, D.E., Bejar, R., Carter, H.: The emerging potential for network analysis to inform precision cancer medicine. J. Mol. Biol. 430(18), 2875–2899 (2018)

    Article  Google Scholar 

  23. Peng, H., et al.: circCPA4 acts as a prognostic factor and regulates the proliferation and metastasis of glioma. J. Cell Mol. Med. 23, 6658–6665 (2019)

    Article  Google Scholar 

  24. Pálsson, S., Cerri, S., Poulsen, H.S., Urup, T., Law, I., Van Leemput, K.: Predicting survival of glioblastoma from automatic whole-brain and tumor segmentation of MR images. Sci. Rep. 12(1), 19744 (2022)

    Article  Google Scholar 

  25. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39(5) (2011)

    Google Scholar 

  26. Smoll, N.R., Schaller, K., Gautschi, O.P.: Long-term survival of patients with glioblastoma multiforme (GBM). J. Clin. Neurosci. 20(5), 670–675 (2013)

    Article  Google Scholar 

  27. Storey, J.D.: A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64(3), 479–498 (2002)

    Article  MathSciNet  Google Scholar 

  28. Suza, W., Lee, D.: 1.10: Genetic pathways. In: Genetics, Agriculture, and Biotechnology (2024)

    Google Scholar 

  29. TCGA: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(23), 1061–1068 (2008)

    Google Scholar 

  30. Team, R.C.: R: A language and environment for statistical computing. MSOR Connect. 1 (2014)

    Google Scholar 

  31. Tibshirani, R.: The lasso method for variable selection in the cox model. Stat. Med. 16(4), 385–395 (1997)

    Article  Google Scholar 

  32. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)

    Article  MathSciNet  Google Scholar 

  33. Veríssimo, A., Carrasquinha, E., Lopes, M.B., Oliveira, A.L., Sagot, M.F., Vinga, S.: Sparse network-based regularization for the analysis of patientomics high-dimensional survival data. bioRxiv (2018)

    Google Scholar 

  34. Veríssimo, A., Oliveira, A.L., Sagot, M.F., Vinga, S.: DegreeCox - a network-based regularization method for survival analysis. BMC Bioinform. 17(16), 449 (2016)

    Article  Google Scholar 

  35. Vinga, S.: Structured sparsity regularization for analyzing high-dimensional omics data. Brief. Bioinform. 22(1), 77–87 (2021)

    Article  Google Scholar 

  36. Wald, A.: Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 54(3), 426–482 (1943)

    Article  MathSciNet  Google Scholar 

  37. Wei, C., et al.: Comprehensive analysis of CPA4 as a poor prognostic biomarker correlated with immune cells infiltration in bladder cancer. Biology 10, 1143 (2021)

    Article  Google Scholar 

  38. Williams, G., Llewelyn, A., Thatcher, R., Hardisty, K.M., Loddo, M.: Utilisation of semiconductor sequencing for the detection of predictive biomarkers in glioblastoma. PLoS ONE 17(3), e0245817 (2022)

    Article  Google Scholar 

  39. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was financed by Fundação para a Ciência e a Tecnologia: UIDB/00006/2020 (DOI:10.54499/ UIDB/00006/2020), PTDC/CCI-BIO/4180/2020 (“MONET - Multi-omic networks in gliomas”, DOI: 10.54499/PTDC/CCI-BIO/4180/2020), UIDB/00297/2020 (DOI: 10.54499/UIDB/00297/2020) and UIDP/00297/2020 (DOI:10.54499/UIDP/00297/2020)(NOVA Math), UIDB/00667/2020 (DOI: 10.54499/UIDB/00667/2020) and UIDP /00667/2020 (DOI:10.54499/UIDP/00667/2020) (UNIDEMI), CEECINST/00042/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunice Carrasquinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brandão, J., Lopes, M.B., Carrasquinha, E. (2024). Refining Gene Selection and Outlier Detection in Glioblastoma Based on a Consensus Approach for Regularized Survival Models. In: Rojas, I., Ortuño, F., Rojas, F., Herrera, L.J., Valenzuela, O. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2024. Lecture Notes in Computer Science(), vol 14848. Springer, Cham. https://doi.org/10.1007/978-3-031-64629-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64629-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64628-7

  • Online ISBN: 978-3-031-64629-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics