Categorical Foundation of Explainable AI: A Unifying Theory | SpringerLink
Skip to main content

Categorical Foundation of Explainable AI: A Unifying Theory

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2024)

Abstract

Explainable AI (XAI) aims to address the human need for safe and reliable AI systems. However, numerous surveys emphasize the absence of a sound mathematical formalization of key XAI notions—remarkably including the term “explanation”, which still lacks a precise definition. To bridge this gap, this paper introduces a unifying mathematical framework allowing the rigorous definition of key XAI notions and processes, using the well-funded formalism of Category theory. In particular, we show that the introduced framework allows us to: (i) model existing learning schemes and architectures in both XAI and AI in general, (ii) formally define the term “explanation”, (iii) establish a theoretical basis for XAI taxonomies, and (iv) analyze commonly overlooked aspects of explaining methods. As a consequence, the proposed categorical framework represents a significant step towards a sound theoretical foundation of explainable AI by providing an unambiguous language to describe and model concepts, algorithms, and systems, thus also promoting research in XAI and collaboration between researchers from diverse fields, such as computer science, cognitive science, and abstract mathematics.

F. Giannini, S. Fioravanti and P. Barbiero—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The full list of the axioms is reported in A.3.

  2. 2.

    Given a category \(\textsf{C}\), \((\textsf{C})^{op}\) denotes its opposite category, which is formed by reversing its morphisms [53], but keeping the same objects \(\textsf{C}^{o}\).

  3. 3.

    Feedback functors are mappings between feedback categories that preserve the structure and axioms of feedback categories.

References

  1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425 (2004)

    Google Scholar 

  2. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (xai). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  3. Aguinaldo, A., Regli, W.: A graphical model-based representation for classical ai plans using category theory. In: ICAPS 2021 Workshop on Explainable AI Planning (2021)

    Google Scholar 

  4. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  5. Barbiero, P., et al.: Interpretable neural-symbolic concept reasoning. In: Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J. (eds.) Proceedings of the 40th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 202, pp. 1801–1825. PMLR (2023). https://proceedings.mlr.press/v202/barbiero23a.html

  6. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees. CRC Press, Boca Raton (1984)

    Google Scholar 

  7. Ciravegna, G., Barbiero, P., Giannini, F., Gori, M., Lió, P., Maggini, M., Melacci, S.: Logic explained networks. Artif. Intell. 314, 103822 (2023)

    Article  MathSciNet  Google Scholar 

  8. Coecke, B., Kissinger, A.: Picturing Quantum Processes - A first course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  9. Costa, F., Ouyang, S., Dolog, P., Lawlor, A.: Automatic generation of natural language explanations. In: Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion, pp. 1–2 (2018)

    Google Scholar 

  10. Cranmer, M.D., Xu, R., Battaglia, P., Ho, S.: Learning symbolic physics with graph networks. arXiv preprint arXiv:1909.05862 (2019)

  11. Cruttwell, G.S.H., Gavranović, B., Ghani, N., Wilson, P., Zanasi, F.: Categorical foundations of gradient-based learning. In: ESOP 2022. LNCS, vol. 13240, pp. 1–28. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99336-8_1

    Chapter  Google Scholar 

  12. Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P.: A survey of the state of explainable AI for natural language processing. arXiv preprint arXiv:2010.00711 (2020)

  13. Das, A., Rad, P.: Opportunities and challenges in explainable artificial intelligence (xai): a survey. ArXiv arxiv:2006.11371 (2020)

  14. Davies, A., et al.: Advancing mathematics by guiding human intuition with AI. Nature 600(7887), 70–74 (2021)

    Article  Google Scholar 

  15. Di Lavore, E., de Felice, G., Román, M.: Monoidal streams for dataflow programming. In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science. Association for Computing Machinery, New York (2022), https://doi.org/10.1145/3531130.3533365

  16. Di Lavore, E., Gianola, A., Román, M., Sabadini, N., Sobociński, P.: A canonical algebra of open transition systems. In: Salaün, G., Wijs, A. (eds.) FACS 2021. LNCS, vol. 13077, pp. 63–81. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90636-8_4

    Chapter  Google Scholar 

  17. Di Martino, F., Delmastro, F.: Explainable AI for clinical and remote health applications: a survey on tabular and time series data. Artif. Intell. Rev. 1–55 (2022)

    Google Scholar 

  18. Doshi-Velez, F., Wallace, B.C., Adams, R.: Graph-sparse lda: a topic model with structured sparsity. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  19. Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a survey. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0210–0215. IEEE (2018)

    Google Scholar 

  20. Durán, J.M., Jongsma, K.R.: Who is afraid of black box algorithms? on the epistemological and ethical basis of trust in medical AI. J. Med. Ethics 47(5), 329–335 (2021)

    Google Scholar 

  21. Eilenberg, S., MacLane, S.: General theory of natural equivalences. Trans. Am. Math. Soc. 58(2), 231–294 (1945)

    Article  MathSciNet  Google Scholar 

  22. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)

    MathSciNet  Google Scholar 

  23. Espinosa Zarlenga, M., et al.: Concept embedding models: beyond the accuracy-explainability trade-off. Adv. Neural. Inf. Process. Syst. 35, 21400–21413 (2022)

    Google Scholar 

  24. Fix, E., Hodges, J.L.: Discriminatory analysis. nonparametric discrimination: Consistency properties. Int. Stat. Rev./Revue Internationale de Statistique 57(3), 238–247 (1989)

    Google Scholar 

  25. Fox, T.: Coalgebras and cartesian categories. Comm. Algebra 4(7), 665–667 (1976)

    Article  MathSciNet  Google Scholar 

  26. Friedman, J.H., Popescu, B.E.: Predictive learning via rule ensembles. Ann. Appl. Stat. 916–954 (2008)

    Google Scholar 

  27. Fritz, T.: A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. Adv. Math. 370, 107239 (2020)

    Article  MathSciNet  Google Scholar 

  28. Geiger, A., Potts, C., Icard, T.: Causal abstraction for faithful model interpretation. arXiv preprint arXiv:2301.04709 (2023)

  29. Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3681–3688 (2019)

    Google Scholar 

  30. Ghorbani, A., Wexler, J., Zou, J., Kim, B.: Towards automatic concept-based explanations. arXiv preprint arXiv:1902.03129 (2019)

  31. Goguen, J.: What is a concept? In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS-ConceptStruct 2005. LNCS (LNAI), vol. 3596, pp. 52–77. Springer, Heidelberg (2005). https://doi.org/10.1007/11524564_4

    Chapter  Google Scholar 

  32. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM (JACM) 39(1), 95–146 (1992)

    Article  MathSciNet  Google Scholar 

  33. Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local rule-based explanations of black box decision systems. arXiv preprint arXiv:1805.10820 (2018)

  34. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.: Xai-explainable artificial intelligence. Sci. Rob. 4(37), eaay7120 (2019)

    Article  Google Scholar 

  35. Hastie, T.J.: Generalized additive models. In: Statistical Models in S, pp. 249–307. Routledge (2017)

    Google Scholar 

  36. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  37. Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable ai: challenges and prospects. arXiv preprint arXiv:1812.04608 (2018)

  38. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  39. Jiménez-Luna, J., Grisoni, F., Schneider, G.: Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2(10), 573–584 (2020)

    Article  Google Scholar 

  40. Joyal, A., Street, R.: The geometry of tensor calculus, i. Adv. Math. 88(1), 55–112 (1991)

    Article  MathSciNet  Google Scholar 

  41. Kahneman, D.: Thinking, Fast and Slow. Macmillan, New York (2011)

    Google Scholar 

  42. Karasmanoglou, A., Antonakakis, M., Zervakis, M.: Heatmap-based explanation of yolov5 object detection with layer-wise relevance propagation. In: 2022 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6. IEEE (2022)

    Google Scholar 

  43. Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics. RAIRO-Theor. Inf. Appl. 36(2), 181–194 (2002)

    Article  MathSciNet  Google Scholar 

  44. Kaufmann, L.: Clustering by means of medoids. In: Proceedings of Statistical Data Analysis Based on the L1 Norm Conference, Neuchatel, 1987, pp. 405–416 (1987)

    Google Scholar 

  45. Kim, B., Khanna, R., Koyejo, O.O.: Examples are not enough, learn to criticize! criticism for interpretability. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  46. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  47. Koh, P.W., et al.: Concept bottleneck models. In: International Conference on Machine Learning, pp. 5338–5348. PMLR (2020)

    Google Scholar 

  48. Kulkarni, A., Shivananda, A., Sharma, N.R.: Explainable AI for computer vision. In: Computer Vision Projects with PyTorch, pp. 325–340. Springer, Heidelberg (2022). https://doi.org/10.1007/978-1-4842-8273-1_10

  49. Letham, B., Rudin, C., McCormick, T.H., Madigan, D., et al.: Interpretable classifiers using rules and bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 9(3), 1350–1371 (2015)

    Article  MathSciNet  Google Scholar 

  50. Li, Y., Zhou, J., Verma, S., Chen, F.: A survey of explainable graph neural networks: Taxonomy and evaluation metrics. arXiv preprint arXiv:2207.12599 (2022)

  51. Lo Piano, S.: Ethical principles in machine learning and artificial intelligence: cases from the field and possible ways forward. Human. Social Sci. Commun. 7(1), 1–7 (2020)

    Google Scholar 

  52. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874 (2017)

  53. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer, New York (1978). https://doi.org/10.1007/978-1-4757-4721-8

  54. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: Deepproblog: neural probabilistic logic programming. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  55. Marcus, G.: The next decade in AI: four steps towards robust artificial intelligence. arXiv preprint arXiv:2002.06177 (2020)

  56. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  57. Minh, D., Wang, H.X., Li, Y.F., Nguyen, T.N.: Explainable artificial intelligence: a comprehensive review. Artif. Intell. Rev. 55(5), 3503–3568 (2022)

    Article  Google Scholar 

  58. Molnar, C.: Interpretable machine learning (2020).https://www.lulu.com/

  59. Nelder, J.A., Wedderburn, R.W.: Generalized linear models. J. Roy. Stat. Soc.: Ser. A (Gen.) 135(3), 370–384 (1972)

    Article  Google Scholar 

  60. Ong, E., Veličković, P.: Learnable commutative monoids for graph neural networks. arXiv preprint arXiv:2212.08541 (2022)

  61. Palacio, S., Lucieri, A., Munir, M., Ahmed, S., Hees, J., Dengel, A.: Xai handbook: towards a unified framework for explainable AI. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3766–3775 (2021)

    Google Scholar 

  62. Petsiuk, V., Das, A., Saenko, K.: Rise: randomized input sampling for explanation of black-box models. arXiv preprint arXiv:1806.07421 (2018)

  63. Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Courier Dover Publications, Mineola (2006)

    Google Scholar 

  64. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?" explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  65. Ribeiro, M.T., Singh, S., Guestrin, C.: Model-agnostic interpretability of machine learning. arXiv preprint arXiv:1606.05386 (2016)

  66. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  67. Riley, M.: Categories of optics. arXiv preprint arXiv:1809.00738 (2018)

  68. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  69. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science (1985)

    Google Scholar 

  70. Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Stat. Comput. 7(4), 1307–1330 (1986)

    Article  MathSciNet  Google Scholar 

  71. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  72. Selinger, P.: Control categories and duality: on the categorical semantics of the lambda-mu calculus. Math. Struct. Comput. Sci. 11, 207–260 (2001)

    Article  MathSciNet  Google Scholar 

  73. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  74. Shiebler, D., Gavranović, B., Wilson, P.: Category theory in machine learning. arXiv preprint arXiv:2106.07032 (2021)

  75. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  76. Sprunger, D., Katsumata, S.: Differentiable causal computations via delayed trace. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, 24–27 June 2019, pp. 1–12. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785670

  77. Stein, D., Staton, S.: Compositional semantics for probabilistic programs with exact conditioning. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–13 (2021).https://doi.org/10.1109/LICS52264.2021.9470552

  78. Swan, J., Nivel, E., Kant, N., Hedges, J., Atkinson, T., Steunebrink, B.: A compositional framework. In: The Road to General Intelligence, pp. 73–90. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08020-3_9

  79. Takeuti, G.: Proof Theory, vol. 81. Courier Corporation, Mineola (2013)

    Google Scholar 

  80. Tarski, A.: The semantic conception of truth: and the foundations of semantics. Phil. Phenomenol. Res. 4(3), 341–376 (1944)

    Article  MathSciNet  Google Scholar 

  81. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)

    Article  MathSciNet  Google Scholar 

  82. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (xai): toward medical xai. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 4793–4813 (2020)

    Article  Google Scholar 

  83. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pp. 280–291 (1997)

    Google Scholar 

  84. Uustalu, T., Vene, V.: The essence of dataflow programming. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 2–18. Springer, Heidelberg (2005). https://doi.org/10.1007/11575467_2

    Chapter  Google Scholar 

  85. Uustalu, T., Vene, V.: Comonadic notions of computation. Electron. Notes Theor. Comput. Sci. 203(5), 263–284 (2008)

    Article  MathSciNet  Google Scholar 

  86. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  87. Verhulst, P.F.: Resherches mathematiques sur la loi d’accroissement de la population. Nouveaux memoires de l’academie royale des sciences 18, 1–41 (1845)

    Google Scholar 

  88. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. JL Tech. 31, 841 (2017)

    Google Scholar 

  89. Wei, P., Lu, Z., Song, J.: Variable importance analysis: a comprehensive review. Reliabil. Eng. Syst. Saf. 142, 399–432 (2015)

    Article  Google Scholar 

  90. Wilson, P., Zanasi, F.: Reverse derivative ascent: a categorical approach to learning Boolean circuits. Electron. Proc. Theor. Comput. Sci. 333, 247–260 (2021)

    Article  MathSciNet  Google Scholar 

  91. Yang, H., Rudin, C., Seltzer, M.: Scalable bayesian rule lists. In: International Conference on Machine Learning, pp. 3921–3930. PMLR (2017)

    Google Scholar 

  92. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  93. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. arXiv preprint arXiv:1702.04595 (2017)

Download references

Acknowledgement

This paper was supported by: TAILOR, the FWF project P33878 “Equations in Universal Algebra”, HumanE-AI-Net projects funded by EU Horizon 2020 under GA No 952215 and No 952026, EU Horizon 2020 under GA No 848077, Horizon-MSCA-2021 under GA No 101073307, the SNF project “ TRUST-ME” No 205121L-214991. This work has been also supported by the Partnership Extended PE00000013 - “FAIR - Future Artificial Intelligence Research” - Spoke 1 “Human-centered AI”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Barbiero .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests.

A Elements of Category Theory

A Elements of Category Theory

1.1 A.1 Monoidal Categories

The process interpretation of monoidal categories [8, 27] sees morphisms in monoidal categories as modelling processes with multiple inputs and multiple outputs. Monoidal categories also provide an intuitive syntax for them through string diagrams [40]. The coherence theorem for monoidal categories [53] ensures that string diagrams are a sound and complete syntax for them and thus all coherence equations for monoidal categories correspond to continuous deformations of string diagrams. One of the main advantages of string diagrams is that they make reasoning with equational theories more intuitive.

Definition 1

([21]). A category \(\textsf{C}\) is given by a class of objects \(\textsf{C}^o\) and, for every two objects \(X,Y \in \textsf{C}^o\), a set of morphisms \(\hom (X,Y)\) with input type \(X\) and output type \(Y\). A morphism \(f \in \hom (X,Y)\) is written \(f :X \rightarrow Y\). For all morphisms \(f :X \rightarrow Y\) and morphisms \(g :Y \rightarrow Z\) there is a composite morphisms \(f \mathbin {;}g :X \rightarrow Z\). For each object \(X \in \textsf{C}^o\) there is an identity morphism \(\mathbb {1}_{X} \in \hom (X,X)\), which represents the process that “does nothing” to the input and just returns it as it is. Composition needs to be associative, i.e. there is no ambiguity in writing \(f \mathbin {;}g \mathbin {;}h\), and unital, i.e. \(f \mathbin {;}\mathbb {1}_{Y} = f = \mathbb {1}_{X} \mathbin {;}f\).

Monoidal categories [53] are categories endowed with extra structure, a monoidal product and a monoidal unit, that allows morphisms to be composed in parallel. The monoidal product is a functor \(\times :\textsf{C} \times \textsf{C} \rightarrow \textsf{C}\) that associates to two processes, \(f_1 :X_1 \rightarrow Y_1\) and \(f_2 :X_2 \rightarrow Y_2\), their parallel composition \(f_1 \times f_2 :X_1 \times X_2 \rightarrow Y_1 \times Y_2\). The monoidal unit is an object \(U \in \textsf{C}^o\), which represents the “absence of inputs or outputs” and needs to satisfy \(X \times U \cong X \cong U \times X\), for each \(X\in \textsf{C}^o\). For this reason, this object is often not drawn in string diagrams and a morphism \(s :U \rightarrow Y\), or \(t :X \rightarrow U\), is represented as a box with no inputs, or no outputs.

1.2 A.2 Cartesian and Symmetric Monoidal Categories

A symmetric monoidal structure on a category is required to satisfy some coherence conditions [53], which ensure that string diagrams are a sound and complete syntax for symmetric monoidal categories [40]. Like functors are mappings between categories that preserve their structure, symmetric monoidal functors are mappings between symmetric monoidal categories that preserve the structure and axioms of symmetric monoidal categories.

Some symmetric monoidal categories have additional structure that allows resources to be copied and discarded [25]. These are called Cartesian categories.

1.3 A.3 Feedback Monoidal Categories

Feedback monoidal functors are mappings between feedback monoidal categories that preserve the structure and axioms of feedback monoidal categories.

Feedback monoidal categories are the syntax for processes with feedback loops. When the monoidal structure of a feedback monoidal category is cartesian, we call it feedback cartesian category. Their semantics can be given by monoidal streams [15]. In cartesian categories, these have an explicit description. We refer to them as cartesian streams, but they have appeared in the literature multiple times under the name of “stateful morphism sequences” [76] and “causal stream functions” [84].

1.4 A.4 Free Categories

We generate “abstract” categories using the notion of free category [53]. Intuitively, a free category serves as a template for a class of categories (e.g., feedback monoidals). To generate a free category, we just need to specify a set of objects and morphisms generators. Then we can realize “concrete” instances of a free category \(\textsf{F}\) using a functor from \(\textsf{F}\) to another category \(\textsf{C}\) that preserves the axioms of \(\textsf{F}\). If such a functor exists then \(\textsf{C}\) is of the same type of \(\textsf{F}\) (e.g., the image of a free feedback monoidal category via a feedback functor is a feedback monoidal category).

1.5 A.5 Institutions

An institution I is constituted by:

  1. (i)

    a category \(\textsf{Sign}_I\) whose objects are signatures (i.e. vocabularies of symbols);

  2. (ii)

    a functor \(Sen: \textsf{Sign}_I \mapsto \textsf{Set}\) providing sets of well-formed expressions (\(\varSigma \)-sentences) for each signature \(\varSigma \in \textsf{Sign}_I^o\);

  3. (iii)

    a functor \(Mod: \textsf{Sign}_I^{op} \mapsto \textsf{Set}\) providing semantic interpretations, i.e. worlds.

Furthermore, Satisfaction is then a parametrized relation \(\models _{\varSigma }\) between \(Mod(\varSigma )\) and \(Sen(\varSigma )\), such that for all signature morphism \(\rho : \varSigma \mapsto \varSigma '\), \(\varSigma '\)-model \(M'\), and any \(\varSigma \)-sentence e,

$$\begin{aligned} M' \models _{\varSigma } \rho (e) \text { iff } \rho (M') \models _{\varSigma } e \end{aligned}$$

where \(\rho (e)\) abbreviates \(Sen(\rho )(e)\) and \(\rho (M')\) stands for \(Mod(\rho )(e)\).

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giannini, F., Fioravanti, S., Barbiero, P., Tonda, A., Liò, P., Di Lavore, E. (2024). Categorical Foundation of Explainable AI: A Unifying Theory. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2155. Springer, Cham. https://doi.org/10.1007/978-3-031-63800-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63800-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63799-5

  • Online ISBN: 978-3-031-63800-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics