Abstract
Explainable AI (XAI) aims to address the human need for safe and reliable AI systems. However, numerous surveys emphasize the absence of a sound mathematical formalization of key XAI notions—remarkably including the term “explanation”, which still lacks a precise definition. To bridge this gap, this paper introduces a unifying mathematical framework allowing the rigorous definition of key XAI notions and processes, using the well-funded formalism of Category theory. In particular, we show that the introduced framework allows us to: (i) model existing learning schemes and architectures in both XAI and AI in general, (ii) formally define the term “explanation”, (iii) establish a theoretical basis for XAI taxonomies, and (iv) analyze commonly overlooked aspects of explaining methods. As a consequence, the proposed categorical framework represents a significant step towards a sound theoretical foundation of explainable AI by providing an unambiguous language to describe and model concepts, algorithms, and systems, thus also promoting research in XAI and collaboration between researchers from diverse fields, such as computer science, cognitive science, and abstract mathematics.
F. Giannini, S. Fioravanti and P. Barbiero—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The full list of the axioms is reported in A.3.
- 2.
Given a category \(\textsf{C}\), \((\textsf{C})^{op}\) denotes its opposite category, which is formed by reversing its morphisms [53], but keeping the same objects \(\textsf{C}^{o}\).
- 3.
Feedback functors are mappings between feedback categories that preserve the structure and axioms of feedback categories.
References
Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425 (2004)
Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (xai). IEEE Access 6, 52138–52160 (2018)
Aguinaldo, A., Regli, W.: A graphical model-based representation for classical ai plans using category theory. In: ICAPS 2021 Workshop on Explainable AI Planning (2021)
Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)
Barbiero, P., et al.: Interpretable neural-symbolic concept reasoning. In: Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J. (eds.) Proceedings of the 40th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 202, pp. 1801–1825. PMLR (2023). https://proceedings.mlr.press/v202/barbiero23a.html
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees. CRC Press, Boca Raton (1984)
Ciravegna, G., Barbiero, P., Giannini, F., Gori, M., Lió, P., Maggini, M., Melacci, S.: Logic explained networks. Artif. Intell. 314, 103822 (2023)
Coecke, B., Kissinger, A.: Picturing Quantum Processes - A first course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, Cambridge (2017)
Costa, F., Ouyang, S., Dolog, P., Lawlor, A.: Automatic generation of natural language explanations. In: Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion, pp. 1–2 (2018)
Cranmer, M.D., Xu, R., Battaglia, P., Ho, S.: Learning symbolic physics with graph networks. arXiv preprint arXiv:1909.05862 (2019)
Cruttwell, G.S.H., Gavranović, B., Ghani, N., Wilson, P., Zanasi, F.: Categorical foundations of gradient-based learning. In: ESOP 2022. LNCS, vol. 13240, pp. 1–28. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99336-8_1
Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P.: A survey of the state of explainable AI for natural language processing. arXiv preprint arXiv:2010.00711 (2020)
Das, A., Rad, P.: Opportunities and challenges in explainable artificial intelligence (xai): a survey. ArXiv arxiv:2006.11371 (2020)
Davies, A., et al.: Advancing mathematics by guiding human intuition with AI. Nature 600(7887), 70–74 (2021)
Di Lavore, E., de Felice, G., Román, M.: Monoidal streams for dataflow programming. In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science. Association for Computing Machinery, New York (2022), https://doi.org/10.1145/3531130.3533365
Di Lavore, E., Gianola, A., Román, M., Sabadini, N., Sobociński, P.: A canonical algebra of open transition systems. In: Salaün, G., Wijs, A. (eds.) FACS 2021. LNCS, vol. 13077, pp. 63–81. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90636-8_4
Di Martino, F., Delmastro, F.: Explainable AI for clinical and remote health applications: a survey on tabular and time series data. Artif. Intell. Rev. 1–55 (2022)
Doshi-Velez, F., Wallace, B.C., Adams, R.: Graph-sparse lda: a topic model with structured sparsity. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a survey. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0210–0215. IEEE (2018)
Durán, J.M., Jongsma, K.R.: Who is afraid of black box algorithms? on the epistemological and ethical basis of trust in medical AI. J. Med. Ethics 47(5), 329–335 (2021)
Eilenberg, S., MacLane, S.: General theory of natural equivalences. Trans. Am. Math. Soc. 58(2), 231–294 (1945)
Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)
Espinosa Zarlenga, M., et al.: Concept embedding models: beyond the accuracy-explainability trade-off. Adv. Neural. Inf. Process. Syst. 35, 21400–21413 (2022)
Fix, E., Hodges, J.L.: Discriminatory analysis. nonparametric discrimination: Consistency properties. Int. Stat. Rev./Revue Internationale de Statistique 57(3), 238–247 (1989)
Fox, T.: Coalgebras and cartesian categories. Comm. Algebra 4(7), 665–667 (1976)
Friedman, J.H., Popescu, B.E.: Predictive learning via rule ensembles. Ann. Appl. Stat. 916–954 (2008)
Fritz, T.: A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. Adv. Math. 370, 107239 (2020)
Geiger, A., Potts, C., Icard, T.: Causal abstraction for faithful model interpretation. arXiv preprint arXiv:2301.04709 (2023)
Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3681–3688 (2019)
Ghorbani, A., Wexler, J., Zou, J., Kim, B.: Towards automatic concept-based explanations. arXiv preprint arXiv:1902.03129 (2019)
Goguen, J.: What is a concept? In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS-ConceptStruct 2005. LNCS (LNAI), vol. 3596, pp. 52–77. Springer, Heidelberg (2005). https://doi.org/10.1007/11524564_4
Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM (JACM) 39(1), 95–146 (1992)
Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local rule-based explanations of black box decision systems. arXiv preprint arXiv:1805.10820 (2018)
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.: Xai-explainable artificial intelligence. Sci. Rob. 4(37), eaay7120 (2019)
Hastie, T.J.: Generalized additive models. In: Statistical Models in S, pp. 249–307. Routledge (2017)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable ai: challenges and prospects. arXiv preprint arXiv:1812.04608 (2018)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)
Jiménez-Luna, J., Grisoni, F., Schneider, G.: Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2(10), 573–584 (2020)
Joyal, A., Street, R.: The geometry of tensor calculus, i. Adv. Math. 88(1), 55–112 (1991)
Kahneman, D.: Thinking, Fast and Slow. Macmillan, New York (2011)
Karasmanoglou, A., Antonakakis, M., Zervakis, M.: Heatmap-based explanation of yolov5 object detection with layer-wise relevance propagation. In: 2022 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6. IEEE (2022)
Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics. RAIRO-Theor. Inf. Appl. 36(2), 181–194 (2002)
Kaufmann, L.: Clustering by means of medoids. In: Proceedings of Statistical Data Analysis Based on the L1 Norm Conference, Neuchatel, 1987, pp. 405–416 (1987)
Kim, B., Khanna, R., Koyejo, O.O.: Examples are not enough, learn to criticize! criticism for interpretability. Adv. Neural Inf. Process. Syst. 29 (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Koh, P.W., et al.: Concept bottleneck models. In: International Conference on Machine Learning, pp. 5338–5348. PMLR (2020)
Kulkarni, A., Shivananda, A., Sharma, N.R.: Explainable AI for computer vision. In: Computer Vision Projects with PyTorch, pp. 325–340. Springer, Heidelberg (2022). https://doi.org/10.1007/978-1-4842-8273-1_10
Letham, B., Rudin, C., McCormick, T.H., Madigan, D., et al.: Interpretable classifiers using rules and bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 9(3), 1350–1371 (2015)
Li, Y., Zhou, J., Verma, S., Chen, F.: A survey of explainable graph neural networks: Taxonomy and evaluation metrics. arXiv preprint arXiv:2207.12599 (2022)
Lo Piano, S.: Ethical principles in machine learning and artificial intelligence: cases from the field and possible ways forward. Human. Social Sci. Commun. 7(1), 1–7 (2020)
Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874 (2017)
Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer, New York (1978). https://doi.org/10.1007/978-1-4757-4721-8
Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: Deepproblog: neural probabilistic logic programming. Adv. Neural Inf. Process. Syst. 31 (2018)
Marcus, G.: The next decade in AI: four steps towards robust artificial intelligence. arXiv preprint arXiv:2002.06177 (2020)
Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)
Minh, D., Wang, H.X., Li, Y.F., Nguyen, T.N.: Explainable artificial intelligence: a comprehensive review. Artif. Intell. Rev. 55(5), 3503–3568 (2022)
Molnar, C.: Interpretable machine learning (2020).https://www.lulu.com/
Nelder, J.A., Wedderburn, R.W.: Generalized linear models. J. Roy. Stat. Soc.: Ser. A (Gen.) 135(3), 370–384 (1972)
Ong, E., Veličković, P.: Learnable commutative monoids for graph neural networks. arXiv preprint arXiv:2212.08541 (2022)
Palacio, S., Lucieri, A., Munir, M., Ahmed, S., Hees, J., Dengel, A.: Xai handbook: towards a unified framework for explainable AI. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3766–3775 (2021)
Petsiuk, V., Das, A., Saenko, K.: Rise: randomized input sampling for explanation of black-box models. arXiv preprint arXiv:1806.07421 (2018)
Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Courier Dover Publications, Mineola (2006)
Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?" explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)
Ribeiro, M.T., Singh, S., Guestrin, C.: Model-agnostic interpretability of machine learning. arXiv preprint arXiv:1606.05386 (2016)
Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Riley, M.: Categories of optics. arXiv preprint arXiv:1809.00738 (2018)
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science (1985)
Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Stat. Comput. 7(4), 1307–1330 (1986)
Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)
Selinger, P.: Control categories and duality: on the categorical semantics of the lambda-mu calculus. Math. Struct. Comput. Sci. 11, 207–260 (2001)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Shiebler, D., Gavranović, B., Wilson, P.: Category theory in machine learning. arXiv preprint arXiv:2106.07032 (2021)
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)
Sprunger, D., Katsumata, S.: Differentiable causal computations via delayed trace. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, 24–27 June 2019, pp. 1–12. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785670
Stein, D., Staton, S.: Compositional semantics for probabilistic programs with exact conditioning. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–13 (2021).https://doi.org/10.1109/LICS52264.2021.9470552
Swan, J., Nivel, E., Kant, N., Hedges, J., Atkinson, T., Steunebrink, B.: A compositional framework. In: The Road to General Intelligence, pp. 73–90. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08020-3_9
Takeuti, G.: Proof Theory, vol. 81. Courier Corporation, Mineola (2013)
Tarski, A.: The semantic conception of truth: and the foundations of semantics. Phil. Phenomenol. Res. 4(3), 341–376 (1944)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)
Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (xai): toward medical xai. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 4793–4813 (2020)
Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pp. 280–291 (1997)
Uustalu, T., Vene, V.: The essence of dataflow programming. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 2–18. Springer, Heidelberg (2005). https://doi.org/10.1007/11575467_2
Uustalu, T., Vene, V.: Comonadic notions of computation. Electron. Notes Theor. Comput. Sci. 203(5), 263–284 (2008)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Verhulst, P.F.: Resherches mathematiques sur la loi d’accroissement de la population. Nouveaux memoires de l’academie royale des sciences 18, 1–41 (1845)
Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. JL Tech. 31, 841 (2017)
Wei, P., Lu, Z., Song, J.: Variable importance analysis: a comprehensive review. Reliabil. Eng. Syst. Saf. 142, 399–432 (2015)
Wilson, P., Zanasi, F.: Reverse derivative ascent: a categorical approach to learning Boolean circuits. Electron. Proc. Theor. Comput. Sci. 333, 247–260 (2021)
Yang, H., Rudin, C., Seltzer, M.: Scalable bayesian rule lists. In: International Conference on Machine Learning, pp. 3921–3930. PMLR (2017)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. arXiv preprint arXiv:1702.04595 (2017)
Acknowledgement
This paper was supported by: TAILOR, the FWF project P33878 “Equations in Universal Algebra”, HumanE-AI-Net projects funded by EU Horizon 2020 under GA No 952215 and No 952026, EU Horizon 2020 under GA No 848077, Horizon-MSCA-2021 under GA No 101073307, the SNF project “ TRUST-ME” No 205121L-214991. This work has been also supported by the Partnership Extended PE00000013 - “FAIR - Future Artificial Intelligence Research” - Spoke 1 “Human-centered AI”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests.
A Elements of Category Theory
A Elements of Category Theory
1.1 A.1 Monoidal Categories
The process interpretation of monoidal categories [8, 27] sees morphisms in monoidal categories as modelling processes with multiple inputs and multiple outputs. Monoidal categories also provide an intuitive syntax for them through string diagrams [40]. The coherence theorem for monoidal categories [53] ensures that string diagrams are a sound and complete syntax for them and thus all coherence equations for monoidal categories correspond to continuous deformations of string diagrams. One of the main advantages of string diagrams is that they make reasoning with equational theories more intuitive.
Definition 1
([21]). A category \(\textsf{C}\) is given by a class of objects \(\textsf{C}^o\) and, for every two objects \(X,Y \in \textsf{C}^o\), a set of morphisms \(\hom (X,Y)\) with input type \(X\) and output type \(Y\). A morphism \(f \in \hom (X,Y)\) is written \(f :X \rightarrow Y\). For all morphisms \(f :X \rightarrow Y\) and morphisms \(g :Y \rightarrow Z\) there is a composite morphisms \(f \mathbin {;}g :X \rightarrow Z\). For each object \(X \in \textsf{C}^o\) there is an identity morphism \(\mathbb {1}_{X} \in \hom (X,X)\), which represents the process that “does nothing” to the input and just returns it as it is. Composition needs to be associative, i.e. there is no ambiguity in writing \(f \mathbin {;}g \mathbin {;}h\), and unital, i.e. \(f \mathbin {;}\mathbb {1}_{Y} = f = \mathbb {1}_{X} \mathbin {;}f\).
Monoidal categories [53] are categories endowed with extra structure, a monoidal product and a monoidal unit, that allows morphisms to be composed in parallel. The monoidal product is a functor \(\times :\textsf{C} \times \textsf{C} \rightarrow \textsf{C}\) that associates to two processes, \(f_1 :X_1 \rightarrow Y_1\) and \(f_2 :X_2 \rightarrow Y_2\), their parallel composition \(f_1 \times f_2 :X_1 \times X_2 \rightarrow Y_1 \times Y_2\). The monoidal unit is an object \(U \in \textsf{C}^o\), which represents the “absence of inputs or outputs” and needs to satisfy \(X \times U \cong X \cong U \times X\), for each \(X\in \textsf{C}^o\). For this reason, this object is often not drawn in string diagrams and a morphism \(s :U \rightarrow Y\), or \(t :X \rightarrow U\), is represented as a box with no inputs, or no outputs.
1.2 A.2 Cartesian and Symmetric Monoidal Categories
A symmetric monoidal structure on a category is required to satisfy some coherence conditions [53], which ensure that string diagrams are a sound and complete syntax for symmetric monoidal categories [40]. Like functors are mappings between categories that preserve their structure, symmetric monoidal functors are mappings between symmetric monoidal categories that preserve the structure and axioms of symmetric monoidal categories.
Some symmetric monoidal categories have additional structure that allows resources to be copied and discarded [25]. These are called Cartesian categories.
1.3 A.3 Feedback Monoidal Categories
Feedback monoidal functors are mappings between feedback monoidal categories that preserve the structure and axioms of feedback monoidal categories.
Feedback monoidal categories are the syntax for processes with feedback loops. When the monoidal structure of a feedback monoidal category is cartesian, we call it feedback cartesian category. Their semantics can be given by monoidal streams [15]. In cartesian categories, these have an explicit description. We refer to them as cartesian streams, but they have appeared in the literature multiple times under the name of “stateful morphism sequences” [76] and “causal stream functions” [84].
1.4 A.4 Free Categories
We generate “abstract” categories using the notion of free category [53]. Intuitively, a free category serves as a template for a class of categories (e.g., feedback monoidals). To generate a free category, we just need to specify a set of objects and morphisms generators. Then we can realize “concrete” instances of a free category \(\textsf{F}\) using a functor from \(\textsf{F}\) to another category \(\textsf{C}\) that preserves the axioms of \(\textsf{F}\). If such a functor exists then \(\textsf{C}\) is of the same type of \(\textsf{F}\) (e.g., the image of a free feedback monoidal category via a feedback functor is a feedback monoidal category).
1.5 A.5 Institutions
An institution I is constituted by:
-
(i)
a category \(\textsf{Sign}_I\) whose objects are signatures (i.e. vocabularies of symbols);
-
(ii)
a functor \(Sen: \textsf{Sign}_I \mapsto \textsf{Set}\) providing sets of well-formed expressions (\(\varSigma \)-sentences) for each signature \(\varSigma \in \textsf{Sign}_I^o\);
-
(iii)
a functor \(Mod: \textsf{Sign}_I^{op} \mapsto \textsf{Set}\) providing semantic interpretations, i.e. worlds.
Furthermore, Satisfaction is then a parametrized relation \(\models _{\varSigma }\) between \(Mod(\varSigma )\) and \(Sen(\varSigma )\), such that for all signature morphism \(\rho : \varSigma \mapsto \varSigma '\), \(\varSigma '\)-model \(M'\), and any \(\varSigma \)-sentence e,
where \(\rho (e)\) abbreviates \(Sen(\rho )(e)\) and \(\rho (M')\) stands for \(Mod(\rho )(e)\).
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Giannini, F., Fioravanti, S., Barbiero, P., Tonda, A., Liò, P., Di Lavore, E. (2024). Categorical Foundation of Explainable AI: A Unifying Theory. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2155. Springer, Cham. https://doi.org/10.1007/978-3-031-63800-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-63800-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63799-5
Online ISBN: 978-3-031-63800-8
eBook Packages: Computer ScienceComputer Science (R0)