A Three-Dimensional Fluid-Structure Interaction Model for Platelet Aggregates Based on Porosity-Dependent Neo-Hookean Material | SpringerLink
Skip to main content

A Three-Dimensional Fluid-Structure Interaction Model for Platelet Aggregates Based on Porosity-Dependent Neo-Hookean Material

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14838))

Included in the following conference series:

  • 389 Accesses

Abstract

The stability of the initial platelet aggregates is relevant in both hemostasis and thrombosis. Understanding the structural stresses of such aggregates under different flow conditions is crucial to gaining insight into the role of platelet activation and binding in the more complex process of clot formation. In this work, a three-dimensional implicit partitioned fluid-structure interaction (FSI) model is presented to study the deformation and structural stress of platelet aggregates in specific blood flow environments. Platelet aggregates are considered as porous mediums in the model. The FSI model couples a fluid solver based on Navier-Stokes equations and a porosity-dependent compressible neo-Hookean material to capture the mechanical characteristics of the platelet aggregates. A parametric study is performed to explore the influence of porosity and applied body force on this material. Based on in vitro experimental data, the deformation and associated stress of a low shear aggregate and a high shear aggregate under different flow conditions are evaluated. This FSI framework offers a way to elucidate the complex interaction between blood flow and platelet aggregates and is applicable to a wider range of porous biomaterials in flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barsimantov, J., et al.: Poroelastic characterization and modeling of subcutaneous tissue under confined compression. Ann. Biomed. Eng. (2024)

    Google Scholar 

  2. Bath, P., Butterworth, R.: Platelet size: measurement, physiology and vascular disease. Blood Coagul. Fibrinol. Int. J. Haemostasis Thrombosis 7(2), 157–161 (1996)

    Article  Google Scholar 

  3. Bershadsky, E.S., Ermokhin, D.A., Kurattsev, V.A., Panteleev, M.A., Nechipurenko, D.Y.: Force balance ratio is a robust predictor of arterial thrombus stability. Biophys. J. (2024)

    Google Scholar 

  4. Blom, F.J.: A monolithical fluid-structure interaction algorithm applied to the piston problem. Comput. Methods Appl. Mech. Eng. 167(3), 369–391 (1998)

    Article  MathSciNet  Google Scholar 

  5. Boodt, N., et al.: Mechanical characterization of thrombi retrieved with endovascular thrombectomy in patients with acute ischemic stroke. Stroke 52(8), 2510–2517 (2021)

    Article  Google Scholar 

  6. Cahalane, R.M.E., et al.: Tensile and compressive mechanical behaviour of human blood clot analogues. Ann. Biomed. Eng. 51(8), 1759–1768 (2023)

    Article  Google Scholar 

  7. van Dam, E.A., et al.: Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech. Model. Mechanobiol. 7(2), 127–137 (2008)

    Article  MathSciNet  Google Scholar 

  8. Degroote, J.: Partitioned simulation of fluid-structure interaction. Arch. Comput. Methods Eng. 20(3), 185–238 (2013)

    Article  MathSciNet  Google Scholar 

  9. Degroote, J., Haelterman, R., Annerel, S., Vierendeels, J.: Coupling techniques for partitioned fluid-structure interaction simulations with black-box solvers. In: MpCCI User Forum, 10th, Proceedings, pp. 82–91. Fraunhofer Institute SCAI (2009)

    Google Scholar 

  10. Felippa, C.A., Park, K., Farhat, C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190(24), 3247–3270 (2001). Adv. Comput. Methods Fluid-Struct. Interact

    Google Scholar 

  11. Fernández, M.A.: Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit. SeMA J. 55(1), 59–108 (2011)

    Article  MathSciNet  Google Scholar 

  12. Han, D., Zhang, J., He, G., Griffith, B.P., Wu, Z.J.: A prestressed intracellular biomechanical model for the platelet to capture the disc-to-sphere morphological change from resting to activated state. Int. J. Comput. Methods 19(10), 2250021 (2022)

    Article  Google Scholar 

  13. Hao, Y., Závodszky, G., Tersteeg, C., Barzegari, M., Hoekstra, A.G.: Image-based flow simulation of platelet aggregates under different shear rates. PLOS Comput. Biol. 19(7), 1–20 (2023)

    Google Scholar 

  14. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  Google Scholar 

  15. Huang, C.C., Shih, C.C., Liu, T.Y., Lee, P.Y.: Assessing the viscoelastic properties of thrombus using a solid-sphere-based instantaneous force approach. Ultrasound Med. Biol. 37(10), 1722–1733 (2011)

    Article  Google Scholar 

  16. Kadri, O.E., Chandran, V.D., Surblyte, M., Voronov, R.S.: In vivo measurement of blood clot mechanics from computational fluid dynamics based on intravital microscopy images. Comput. Biol. Med. 106, 1–11 (2019)

    Article  Google Scholar 

  17. Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43(1), 61–72 (2008)

    Google Scholar 

  18. Lee, S., Jang, S., Park, Y.: Measuring three-dimensional dynamics of platelet activation using 3-d quantitative phase imaging. bioRxiv (2019)

    Google Scholar 

  19. Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: FEBio: finite elements for biomechanics. J. Biomech. Eng. 134(1), 011005 (2012)

    Google Scholar 

  20. Matthies, H.G., Niekamp, R., Steindorf, J.: Algorithms for strong coupling procedures. Comput. Methods Appl. Mech. Eng. 195(17), 2028–2049 (2006)

    Article  MathSciNet  Google Scholar 

  21. Rugonyi, S., Bathe, K.: On the analysis of fully-coupled fluid flows with structural interactions - a coupling and condensation procedure. Int. J. Comput. Civil Struct. Eng. 1, 29–41 (2000)

    Google Scholar 

  22. Slaboch, C.L., Alber, M.S., Rosen, E.D., Ovaert, T.C.: Mechano-rheological properties of the murine thrombus determined via nanoindentation and finite element modeling. J. Mech. Behav. Biomed. Mater. 10, 75–86 (2012)

    Article  Google Scholar 

  23. Stalker, T.J., et al.: Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 121(10), 1875–1885 (2013)

    Google Scholar 

  24. Storti, F., van de Vosse, F.N.: A continuum model for platelet plug formation, growth and deformation. Int. J. Numer. Methods Biomed. Eng. 30(12), 1541–1557 (2014)

    Article  Google Scholar 

  25. Teeraratkul, C., Tomaiuolo, M., Stalker, T.J., Mukherjee, D.: Investigating clot-flow interactions by integrating intravital imaging with in silico modeling for analysis of flow, transport, and hemodynamic forces. Sci. Rep. 14(1), 696 (2024)

    Article  Google Scholar 

  26. Trudnowski, R.J., Rico, R.C.: Specific gravity of blood and plasma at 4 and \(37^{\circ }\text{C}\). Clin. Chem. 20(5), 615–616 (1974)

    Google Scholar 

  27. Voronov, R.S., Stalker, T.J., Brass, L.F., Diamond, S.L.: Simulation of intrathrombus fluid and solute transport using in vivo clot structures with single platelet resolution. Ann. Biomed. Eng. 41(6), 1297–1307 (2013)

    Article  Google Scholar 

  28. Wang, W., Lindsey, J.P., Chen, J., Diacovo, T.G., King, M.R.: Analysis of early thrombus dynamics in a humanized mouse laser injury model. Biorheology 51(3–14), 1 (2014)

    Google Scholar 

  29. Welsh, J.D., et al.: A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood 124(11), 1808–1815 (2014)

    Google Scholar 

  30. Winterstein, A., Lerch, C., Bletzinger, K.U., Wüchner, R.: Partitioned simulation strategies for fluid-structure-control interaction problems by Gauss-Seidel formulations. Adv. Model. Simul. Eng. Sci. 5(1), 29 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, Y., Hoekstra, A.G., Závodszky, G. (2024). A Three-Dimensional Fluid-Structure Interaction Model for Platelet Aggregates Based on Porosity-Dependent Neo-Hookean Material. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14838. Springer, Cham. https://doi.org/10.1007/978-3-031-63783-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63783-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63785-8

  • Online ISBN: 978-3-031-63783-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics