Modeling Tsunami Waves at the Coastline of Valparaiso Area of Chile with Physics Informed Neural Networks | SpringerLink
Skip to main content

Modeling Tsunami Waves at the Coastline of Valparaiso Area of Chile with Physics Informed Neural Networks

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

The Chilean coast is a very seismically active region. In the 21st century, the Chilean region experienced 19 earthquakes with a magnitude of 6.2 to 8.8, where 597 people were killed. The most dangerous earthquakes occur at the bottom of the ocean. The tsunamis they cause are very dangerous for residents of the surrounding coasts. In 2010, as many as 525 people died in a destructive tsunami caused by an underwater earthquake. Our research paper aims to develop a tsunami simulator based on the modern methodology of Physics Informed Neural Networks (PINN). We test our model using a tsunami caused by a hypothetical earthquake off the coast of the densely populated area of Valparaiso, Chile. We employ a longest-edge refinement algorithm expressed by graph transformation rules to generate a sequence of triangular computational meshes approximating the seabed and seashore of the Valparaiso area based on the Global Multi-Resolution Topography Data available. For the training of the PINN, we employ points from the vertices of the generated triangular mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  2. Maczuga, P., Paszyński, M.: Influence of activation functions on the convergence of physics-informed neural networks for 1D wave equation. In: Computational Science – ICCS 2023: 23rd International Conference, Prague, Czech Republic, July 3-5, 2023, Proceedings, Part I, pp. 74–88 (2023)

    Google Scholar 

  3. Kingma, D.P., Lei Ba, J.: ADAM: a method for stochastic optimization (2014). arXiv:1412.6980

  4. Loshchilov, I., Hutter, F.: Decoupled Weight Decay Regularization arxiv.org/abs/1711.05101 (2019)

  5. Chen, X., et al.: Symbolic Discovery of Optimization Algorithms, arxiv.org/abs/2302.06675 (2023)

  6. Deng, Y., Hu, H., Song, Z., Weinstein, O., Zhuo, D.: Training Overparametrized Neural Networks in Sublinear Time, arxiv.org/abs/2208.04508 (2022)

  7. Chen, Y., Yongfu, X., Wang, L., Li, T.: Modeling water flow in unsaturated soils through physics-informed neural network with principled loss function. Comput. Geotech. 161, 105546 (2023)

    Article  Google Scholar 

  8. Maczuga, P., Oliver-Serra, A., Paszyńska, A., Valseth, E., Paszyński, M.: Graph-grammar based algorithm for asteroid tsunami simulations. J. Comput. Sci. 64, 101856 (2022)

    Article  Google Scholar 

  9. Lu, L., Meng, X., Mao, Z.: DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63(1), 208–228 (2021)

    Article  MathSciNet  Google Scholar 

  10. Peng, W., Zhang, J., Zhou, W., Zhao, X., Yao, W., Chen, X.: IDRLnet: A Physics-Informed Neural Network Library, arxiv2107.04320 (2021)

    Google Scholar 

  11. Global Multi-Resolution Topography Data Synthesis https://www.gmrt.org/

  12. https://en.wikipedia.org/wiki/List_of_earthquakes_in_Chile

  13. Ali Heydari, A., Thompson, C.A., Mehmood, A.: SoftAdapt: techniques for adaptive loss weighting of neural networks with multi-part loss functions. arXiv:1912.12355v1 (2019)

  14. Maczuga, P., et al.: Physics Informed Neural Network Code for 2D Transient Problems (PINN-2DT) Compatible with Google Colab arXiv:2310.03755v2 (2024)

  15. Paszyńska, A., Paszyński, M., Grabska, E.: Graph transformations for modeling hp-adaptive finite element method with triangular elements. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008. LNCS, vol. 5103, pp. 604–613. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69389-5_68

    Chapter  Google Scholar 

  16. Podsiadło, K., et al.: Parallel graph-grammar-based algorithm for the longest-edge refinement of triangular meshes and the pollution simulations in Lesser Poland area. Eng. Comput. 37, 3857–3880 (2021)

    Article  Google Scholar 

  17. Rivara, M.C.: New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations. Int. J. Numerical Methods Eng. 40, 3313–3324 (1997)

    Article  MathSciNet  Google Scholar 

  18. Paszyński, M., Paszyńska, A.: Graph Transformations for Modeling Parallel hp-Adaptive Finite Element Method, Parallel Processing and Applied Mathematics: 7th International Conference, pp. 1313–1322. Gdansk, Poland (2007)

    Google Scholar 

  19. LeVeque, R.J., George, D.L., Berger, M.J.: Tsunami modelling with adaptively refined finite volume methods. Acta Numer 20, 211–289 (2011)

    Article  MathSciNet  Google Scholar 

  20. Wang, X.: User manual for COMCOT version 1.7. Cornel University (2009)

    Google Scholar 

  21. Lynett, P., Liu, P.L.F., Sitanggang, K.I., Kim, D.: Modeling Wave Generation, Evolution, and Interaction with Depth-Integrated, Dispersive Wave Equations COULWAVE Code Manual Cornell University Long and Intermediate, Wave Modeling Package V. 2.0, Cornell University, Itacha, New York (2008)

    Google Scholar 

  22. Tavakkol, S., Lynett, P.: Celeris base: An interactive and immersive Boussinesq-type nearshore wave simulation software. Comput. Phys. Commun. 248 (2020) Article 106966

    Google Scholar 

  23. Becker, E.B., Carey, G.F., Oden, J.T.: Finite elements: an introduction, vol. 1. Prentice Hall (1981)

    Google Scholar 

  24. Woźniak, M., Łoś, M., Paszyński, M., Dalcin, L., Calo, V.M.: Parallel fast isogeometric solvers for explicit dynamics. Comput. Inf. 36(2), 423–448 (2017)

    MathSciNet  Google Scholar 

  25. Łoś, M., Munoz-Matute, J., Muga, I., Paszyński, M.: Isogeometric Residual Minimization Method (iGRM) with direction splitting for non-stationary advection-diffusion problems. Comput. Math. Appl. 79(2), 213–229 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Albert Oliver Serra was supported by “Ayudas para la recualificación del sistema universitario español” grant funded by the ULPGC, the Ministry of Universities by Order UNI/501/2021 of 26 May, and the European Union-Next Generation EU Funds The authors are grateful for support from the funds the Polish Ministry of Science and Higher Education assigned to AGH University of Krakow. The visit of Maciej Paszyński at Oden Institute was supported by J. T. Oden Research Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Paszyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niewiadomska, A. et al. (2024). Modeling Tsunami Waves at the Coastline of Valparaiso Area of Chile with Physics Informed Neural Networks. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14833. Springer, Cham. https://doi.org/10.1007/978-3-031-63751-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63751-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63753-7

  • Online ISBN: 978-3-031-63751-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics