Net Zero Strategies: Empowering Climate Change Solutions Through Advanced Analytics and Time Series | SpringerLink
Skip to main content

Net Zero Strategies: Empowering Climate Change Solutions Through Advanced Analytics and Time Series

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops (AIAI 2024)

Abstract

This study conducts a comprehensive analysis of CO2 emissions trends from 1990 to 2020 across critical sectors including agriculture, buildings, electricity, industry, oil and gas, and waste. Leveraging a robust dataset of 35,000 observations, we explore emission patterns and their impact on climate change mitigation efforts. Employing advanced time series models—such as the Drift Method, Holt Linear Method, Damped Trend Method, and ARIMA—we forecast emissions and evaluate these models using RMSE, MAE, and MAPE to gauge their predictive accuracy. This research aims to assess the feasibility for various countries to meet the Paris Agreement’s goal of limiting global warming to 1.5 \(^\circ \)C, aligned with the IPCC AR6 report’s benchmarks for emissions peaking by 2025 and a 43% reduction by 2030. Our analysis reveals critical insights into emission trajectories, underscoring the urgency and practicality of achieving global climate objectives. The findings serve as a crucial guide for policymakers in crafting informed, sustainable development strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 15729
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The climate action tracker. https://climateactiontracker.org/. Accessed 15 Feb 2024

  2. Climate change 2023 - synthesis report summary for policymakers. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf. Accessed 15 Feb 2024

  3. Net zero by 2050 - a roadmap for the global energy sector. https://www.iea.org/reports/net-zero-by-2050. Accessed 15 Feb 2024

  4. The sustainable development goals report 2022. https://unstats.un.org/sdgs/report/2022/. Accessed 15 Feb 2024

  5. Transforming our world: The 2030 agenda for sustainable development. https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf. Accessed 15 Feb 2024

  6. Bodansky, D.: The Paris climate change agreement: a new hope? Am. J. Int. Law 110(2), 288–319 (2016)

    Article  Google Scholar 

  7. Dodson, J., Dérer, P., Cafaro, P., Götmark, F.: Population growth, family planning and the Paris agreement: an assessment of the nationally determined contributions (NDCS). Int. Environ. Agreements Polit. Law Econ. 22(3), 561–576 (2022)

    Article  Google Scholar 

  8. Kanavos, A., Kounelis, F., Iliadis, L., Makris, C.: Deep learning models for forecasting aviation demand time series. Neural Comput. Appl. 33(23), 16329–16343 (2021)

    Article  Google Scholar 

  9. Kanavos, A., Trigka, M., Dritsas, E., Vonitsanos, G., Mylonas, P.: A regularization-based big data framework for winter precipitation forecasting on streaming data. Electronics 10(16), 1872 (2021)

    Article  Google Scholar 

  10. Karamitsos, I., Papadaki, M., Al-Hussaeni, K., Kanavos, A.: Transforming airport security: enhancing efficiency through blockchain smart contracts. Electronics 12(21), 4492 (2023)

    Article  Google Scholar 

  11. Kumari, S., Singh, S.K.: Machine learning-based time series models for effective CO2 emission prediction in India. Environ. Sci. Pollut. Res. 30(55), 116601–116616 (2023)

    Article  Google Scholar 

  12. Kunda, D., Phiri, H.: An approach for predicting CO2 emissions using data mining techniques. Int. J. Comput. Appl. 172(13), 7–10 (2017)

    Google Scholar 

  13. Li, X., Ren, A., Li, Q.: Exploring patterns of transportation-related CO2 emissions using machine learning methods. Sustainability 14(8), 4588 (2022)

    Article  Google Scholar 

  14. Lingaraju, A.K., et al.: IoT-based waste segregation with location tracking and air quality monitoring for smart cities. Smart Cities 6(3), 1507–1522 (2023)

    Article  Google Scholar 

  15. Ma, N., Shum, W.Y., Han, T., Lai, F.: Can machine learning be applied to carbon emissions analysis: an application to the CO2 emissions analysis using gaussian process regression. Front. Energy Res. 9, 756311 (2021)

    Article  Google Scholar 

  16. Malik, A., Hussain, E., Baig, S., Khokhar, M.F.: Forecasting CO2 emissions from energy consumption in Pakistan under different scenarios: the China-Pakistan economic corridor. Greenhouse Gases Sci. Technol. 10(2), 380–389 (2020)

    Article  Google Scholar 

  17. Qader, M.R., Khan, S., Kamal, M., Usman, M., Haseeb, M.: Forecasting carbon emissions due to electricity power generation in Bahrain. Environ. Sci. Pollut. Res. 29, 17346–17357 (2021)

    Article  Google Scholar 

  18. Rogelj, J., et al.: A new scenario logic for the Paris agreement long-term temperature goal. Nature 573(7774), 357–363 (2019)

    Article  Google Scholar 

  19. Tudor, C.: Predicting the evolution of CO2 emissions in Bahrain with automated forecasting methods. Sustainability 8(9), 923 (2016)

    Article  Google Scholar 

  20. Tudor, C., Sova, R.: Eu net-zero policy achievement assessment in selected members through automated forecasting algorithms. ISPRS Int. J. Geo Inf. 11(4), 232 (2022)

    Article  Google Scholar 

  21. Wei, S., Yuwei, W., Zhang, C.: Forecasting CO2 emissions in Hebei, China, through moth-flame optimization based on the random forest and extreme learning machine. Environ. Sci. Pollut. Res. 25, 28985–28997 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Karamitsos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Najr, T., Aldo, C., Karamitsos, I., Kanavos, A., Modak, S. (2024). Net Zero Strategies: Empowering Climate Change Solutions Through Advanced Analytics and Time Series. In: Maglogiannis, I., Iliadis, L., Karydis, I., Papaleonidas, A., Chochliouros, I. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-031-63227-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63227-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63226-6

  • Online ISBN: 978-3-031-63227-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics