Multivariate-Autoencoder Flow-Analogue Method for Heat Waves Reconstruction | SpringerLink
Skip to main content

Multivariate-Autoencoder Flow-Analogue Method for Heat Waves Reconstruction

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (CAEPIA 2024)

Abstract

This paper contributes with an alternative to the multivariate Analogue Method (AM) version, using a preprocessing stage carried out by an Autoencoder (AE). The proposed method (MvAE-AM) is applied to reconstruct France’s 2003, Balkans’ 2007 and Russia 2010 mega heat waves. Using divers such as geopotential height of the 500hPA (Z500), mean sea level pressure (MSL), soil moisture (SM), and potential evaporation (PEva), the AE extracts the most relevant information into a smaller univariate latent space. Then, the classic univariate AM is applied to search for similar situations in the past over the latent space, with a minimum distance to the heat wave under evaluation. We have compared the proposed method’s performance with that of a classical multivariate AM (MvAM), showing that the MvAE-AM approach outperforms the MvAM in terms of accuracy (\(+1.1257\)C), while reducing the problem’s dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salcedo-Sanz, S., et al.: Analysis, characterization, prediction, and attribution of extreme atmospheric events with machine learning and deep learning techniques: a review. Theoret. Appl. Climatol. 155, 1–44 (2023)

    Article  Google Scholar 

  2. Barriopedro, D., Garcia-Herrera, R.A., Ordóñez, C., Miralles, D.G., Salcedo-Sanz, S.: Heat waves: Physical understanding and scientific challenges. Rev. Geophys. 61 (2023)

    Google Scholar 

  3. Rousi, E., Kornhuber, K., Beobide-Arsuaga, G., Luo, F., Coumou, D.: Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 13 (2022)

    Google Scholar 

  4. Papari, J.R., Perkins-Kirkpatrick, S.E., Sharples, J.J.: Intensifying Australian heatwave trends and their sensitivity to observational data. Earth’s Future 9 (2020)

    Google Scholar 

  5. White, R.H., et al.: The unprecedented pacific northwest heatwave of June 2021. Nat. Commun. 14 (2023)

    Google Scholar 

  6. He, G.-X., et al.: Assessing the impact of atmospheric heatwaves on intertidal clams. Sci. Total Environ., 156744 (2022)

    Google Scholar 

  7. Siboni, N., et al.: Increased abundance of potentially pathogenic vibrio and a marine heatwave co-occur with a pacific oyster summer mortality event. Aquaculture (2024)

    Google Scholar 

  8. Materia, S., et al.: Summer temperature response to extreme soil water conditions in the Mediterranean transitional climate regime. Clim. Dyn. 58, 1943–1963 (2021)

    Article  Google Scholar 

  9. López-Bueno, J.A., et al.: Evolution of the threshold temperature definition of a heat wave vs. evolution of the minimum mortality temperature: a case study in Spain during the 1983-2018 period. Environ. Sci. Eur. 33, 1–10 (2021)

    Google Scholar 

  10. Torralba, V., et al.: Nighttime heat waves in the euro-Mediterranean region: definition, characterisation, and seasonal prediction. Environ. Res. Lett. (2024)

    Google Scholar 

  11. Adnan, M.S.G., Dewan, A., Botje, D., Shahid, S., Hassan, Q.K.: Vulnerability of Australia to heatwaves: a systematic review on influencing factors, impacts, and mitigation options. Environ. Res., 113703 (2022)

    Google Scholar 

  12. Fister, D., Pérez-Aracil, J., Peláez-Rodríguez, C., Ser, J.D., Salcedo-Sanz, S.: Accurate long-term air temperature prediction with a fusion of artificial intelligence and data reduction techniques. ArXiv abs/2209.15424 (2022)

    Google Scholar 

  13. Ren, L., Zhou, T., Zhang, W.: Attribution of the record-breaking heat event over northeast Asia in summer 2018: the role of circulation. Environ. Res. Lett. 15 (2020)

    Google Scholar 

  14. Zorita, E., von Storch, H.: The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J. Clim. 12, 2474–2489 (1999)

    Article  Google Scholar 

  15. Gao, X., Schlosser, C.A., Morgan, E.: Application of the analogue method to modeling heat waves: a case study with power transformers 16 (2017)

    Google Scholar 

  16. Pinaya, W.H.L., Vieira, S., Garcia-Dias, R., Mechelli, A.: Autoencoders. In: Machine Learning, pp. 193–208. Elsevier (2020)

    Google Scholar 

  17. Caillouet, L.P., Vidal, J., Sauquet, E., Graff, B., Soubeyroux, J.M.: Scope climate: a 142-year daily high-resolution ensemble meteorological reconstruction dataset over France. Earth Syst. Sci Data (2019)

    Google Scholar 

  18. Russo, S., Sillmann, J., Fischer, E M.: Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10 (2015)

    Google Scholar 

  19. Hersbach, H., et al.: The era5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020)

    Article  Google Scholar 

  20. Demirtaş, M.: The anomalously hot summer of 2021 over the euro-Mediterranean region: underlying atmospheric drivers and heatwaves. Theor. Appl. Climatol. 152, 861–870 (2023)

    Google Scholar 

  21. Jézéquel, A., Yiou, P., Radanovics, S.: Role of circulation in European heatwaves using flow analogues. Clim. Dyn. 50, 1145–1159 (2018)

    Article  Google Scholar 

  22. Salinger, M.J., et al.: The unprecedented coupled ocean-atmosphere summer heatwave in the new Zealand region 2017/18: drivers, mechanisms and impacts. Environ. Res. Lett. 14 (2019)

    Google Scholar 

  23. Zeder, J., Fischer, E.M.: Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change. Adv. Stat. Climatol. Meteorol. Oceanograp. (2023)

    Google Scholar 

  24. di Capua, G., et al.: Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. NPJ Climate Atmospheric Sci. 4, 1–14 (2021)

    Google Scholar 

  25. Lorenz, E.N.: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 26, 636–646 (1969)

    Article  Google Scholar 

  26. Grotch, S.L., Maccracken, M.C.: The use of general circulation models to predict regional climatic change. J. Clim. 4, 286–303 (1991)

    Article  Google Scholar 

  27. Hulme, M.: Attributing weather extremes to ‘climate change’ a review. Prog. Phys. Geogr. 38(4), 499–511 (2014)

    Article  Google Scholar 

  28. Faranda, D., Vrac, M., Yiou, P., Jézéquel, A., Thao, S.: Changes in future synoptic circulation patterns: consequences for extreme event attribution. Geophys. Res. Lett. 47 (2020)

    Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the European Union, through H2020 Project “CLIMATE INTELLIGENCE Extreme events detection, attribution and adaptation design using machine learning (CLINT)”, Ref: 101003876-CLINT. The present study has been partially supported by the “Agencia Estatal de Investigación (España)” (grant ref.: PID2020-115454GB-C21 and PID2020-115454GB-C22 through the projects of the Spanish Ministry of Science and Innovation (MICINN). David Guijo-Rubio has been supported by the “Agencia Estatal de Investigación (España)” MCIU/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR (grant ref.: JDC2022-048378-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosmin M. Marina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marina, C.M., Lorente-Ramos, E., Ayllón-Gavilán, R., Gutiérrez, P.A., Pérez-Aracil, J., Salcedo-Sanz, S. (2024). Multivariate-Autoencoder Flow-Analogue Method for Heat Waves Reconstruction. In: Alonso-Betanzos, A., et al. Advances in Artificial Intelligence. CAEPIA 2024. Lecture Notes in Computer Science(), vol 14640. Springer, Cham. https://doi.org/10.1007/978-3-031-62799-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62799-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62798-9

  • Online ISBN: 978-3-031-62799-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics