Integrating Predictive Process Monitoring Techniques in Smart Agriculture | SpringerLink
Skip to main content

Integrating Predictive Process Monitoring Techniques in Smart Agriculture

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2024)

Abstract

Problems related to the environment are increasingly commonly known and consequently also technology is adapting to find suitable solutions. The ancestral technique of crop rotation was identified as a solution to address the problems related to pollution due to intensive food production (i.e. using fertilizers and pesticides). To ensure that this technique can actually improve food production, it is necessary to understand how modern technologies can support it; in particular the analysis of crop rotation can support farmers in decision making process and the optimization of farm management practices. The aim of this paper is to investigate how predictive process monitoring techniques can enhance crop rotation strategies by leveraging Agriculture 4.0 through real-time monitoring, resulting in more accurate and adaptive strategies. It is a position paper that proposes research questions for further study, which may help to develop the research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Castellazzi, M., Wood, G., Burgess, P., Morris, J., Conrad, K., Perry, J.: A systematic representation of crop rotations. Agric. Syst. 97(1), 26–33 (2008). https://doi.org/10.1016/j.agsy.2007.10.006. https://www.sciencedirect.com/science/article/pii/S0308521X07001096

  2. Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 320–346. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_10

    Chapter  Google Scholar 

  3. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27

    Chapter  Google Scholar 

  4. Dias, T., Dukes, A.E., Antunes, P.M.: Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J. Sci. Food Agric. 95(3), 447–54 (2015). https://api.semanticscholar.org/CorpusID:7890471

  5. Dupuis, A., Dadouchi, C., Agard, B.: Predicting crop rotations using process mining techniques and Markov principals. Comput. Electron. Agric. 194, 106686 (2022)

    Article  Google Scholar 

  6. Dupuis, A., Dadouchi, C., Agard, B.: Methodology for multi-temporal prediction of crop rotations using recurrent neural networks. Smart Agric. Technol. 4, 100152 (2023)

    Article  Google Scholar 

  7. Dury, J., Schaller, N., Garçia, F., Reynaud, A., Bergez, J.E.: Models to support cropping plan and crop rotation decisions. A review. Agron. Sustain. Dev. 32, 567–580 (2012). https://api.semanticscholar.org/CorpusID:16687797

  8. Fenz, S., Neubauer, T., Heurix, J., Friedel, J.K., Wohlmuth, M.L.: AI-and data-driven pre-crop values and crop rotation matrices. Eur. J. Agron. 150, 126949 (2023)

    Article  Google Scholar 

  9. González Sánchez, A., Frausto Solís, J., Ojeda Bustamante, W., et al.: Predictive ability of machine learning methods for massive crop yield prediction (2014)

    Google Scholar 

  10. Kulkarni, S., Mandal, S.N., Sharma, G.S., Mundada, M.R., Meeradevi: Predictive analysis to improve crop yield using a neural network model. In: 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 74–79 (2018). https://doi.org/10.1109/ICACCI.2018.8554851

  11. Măruşter, L., Faber, N.R., Jorna, R.J., van Haren, R.J.: A process mining approach to analyse user behaviour. In: International Conference on Web Information Systems and Technologies, vol. 2, pp. 208–214. SCITEPRESS (2008)

    Google Scholar 

  12. Măruşter, L., Van Beest, N.R.: Redesigning business processes: a methodology based on simulation and process mining techniques. Knowl. Inf. Syst. 21, 267–297 (2009)

    Article  Google Scholar 

  13. Nti, I.K., Zaman, A., Nyarko-Boateng, O., Adekoya, A.F., Keyeremeh, F.: A predictive analytics model for crop suitability and productivity with tree-based ensemble learning. Decis. Anal. J. 8, 100311 (2023). https://doi.org/10.1016/j.dajour.2023.100311. https://www.sciencedirect.com/science/article/pii/S2772662223001510

  14. Pasquadibisceglie, V., Appice, A., Castellano, G., van der Aalst, W.M.P.: PROMISE: coupling predictive process mining to process discovery. Inf. Sci. 606, 250–271 (2022). https://doi.org/10.1016/J.INS.2022.05.052

    Article  Google Scholar 

  15. Pravilovic, S., Appice, A., Malerba, D.: Process mining to forecast the future of running cases. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2013. LNCS (LNAI), vol. 8399, pp. 67–81. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08407-7_5

    Chapter  Google Scholar 

  16. dos Santos, U.J.L., Pessin, G., da Costa, C.A., da Rosa Righi, R.: AgriPrediction: a proactive internet of things model to anticipate problems and improve production in agricultural crops. Comput. Electron. Agric. 161, 202–213 (2019)

    Google Scholar 

  17. Satir, O., Berberoglu, S.: Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crop Res 192, 134–143 (2016)

    Article  Google Scholar 

  18. Springmann, M., et al.: Options for keeping the food system within environmental limits. Nature 562(7728), 519–525 (2018)

    Article  Google Scholar 

  19. Surya, P., Aroquiaraj, I.L., et al.: Crop yield prediction in agriculture using data mining predictive analytic techniques. Int. J. Res. Anal. Rev. 5(4), 783–787 (2018)

    Google Scholar 

  20. Upcott, E.V., Henrys, P.A., Redhead, J.W., Jarvis, S.G., Pywell, R.F.: A new approach to characterising and predicting crop rotations using national-scale annual crop maps. Sci. Total Environ. 860, 160471 (2023)

    Article  Google Scholar 

  21. Van Der Aalst, W.: Process mining: overview and opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 3(2), 1–17 (2012)

    Article  Google Scholar 

  22. Yang, J., Ouyang, C., Dik, G., Corry, P., ter Hofstede, A.H.M.: Crop harvest forecast via agronomy-informed process modelling and predictive monitoring. In: Franch, X., Poels, G., Gailly, F., Snoeck, M. (eds.) CAiSE 2022. LNCS, vol. 13295, pp. 201–217. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07472-1_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Fioretto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fioretto, S., Ienco, D., Interdonato, R., Masciari, E. (2024). Integrating Predictive Process Monitoring Techniques in Smart Agriculture. In: Appice, A., Azzag, H., Hacid, MS., Hadjali, A., Ras, Z. (eds) Foundations of Intelligent Systems. ISMIS 2024. Lecture Notes in Computer Science(), vol 14670. Springer, Cham. https://doi.org/10.1007/978-3-031-62700-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62700-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62699-9

  • Online ISBN: 978-3-031-62700-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics