Abstract
Problems related to the environment are increasingly commonly known and consequently also technology is adapting to find suitable solutions. The ancestral technique of crop rotation was identified as a solution to address the problems related to pollution due to intensive food production (i.e. using fertilizers and pesticides). To ensure that this technique can actually improve food production, it is necessary to understand how modern technologies can support it; in particular the analysis of crop rotation can support farmers in decision making process and the optimization of farm management practices. The aim of this paper is to investigate how predictive process monitoring techniques can enhance crop rotation strategies by leveraging Agriculture 4.0 through real-time monitoring, resulting in more accurate and adaptive strategies. It is a position paper that proposes research questions for further study, which may help to develop the research area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Castellazzi, M., Wood, G., Burgess, P., Morris, J., Conrad, K., Perry, J.: A systematic representation of crop rotations. Agric. Syst. 97(1), 26–33 (2008). https://doi.org/10.1016/j.agsy.2007.10.006. https://www.sciencedirect.com/science/article/pii/S0308521X07001096
Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 320–346. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_10
Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27
Dias, T., Dukes, A.E., Antunes, P.M.: Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J. Sci. Food Agric. 95(3), 447–54 (2015). https://api.semanticscholar.org/CorpusID:7890471
Dupuis, A., Dadouchi, C., Agard, B.: Predicting crop rotations using process mining techniques and Markov principals. Comput. Electron. Agric. 194, 106686 (2022)
Dupuis, A., Dadouchi, C., Agard, B.: Methodology for multi-temporal prediction of crop rotations using recurrent neural networks. Smart Agric. Technol. 4, 100152 (2023)
Dury, J., Schaller, N., Garçia, F., Reynaud, A., Bergez, J.E.: Models to support cropping plan and crop rotation decisions. A review. Agron. Sustain. Dev. 32, 567–580 (2012). https://api.semanticscholar.org/CorpusID:16687797
Fenz, S., Neubauer, T., Heurix, J., Friedel, J.K., Wohlmuth, M.L.: AI-and data-driven pre-crop values and crop rotation matrices. Eur. J. Agron. 150, 126949 (2023)
González Sánchez, A., Frausto Solís, J., Ojeda Bustamante, W., et al.: Predictive ability of machine learning methods for massive crop yield prediction (2014)
Kulkarni, S., Mandal, S.N., Sharma, G.S., Mundada, M.R., Meeradevi: Predictive analysis to improve crop yield using a neural network model. In: 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 74–79 (2018). https://doi.org/10.1109/ICACCI.2018.8554851
Măruşter, L., Faber, N.R., Jorna, R.J., van Haren, R.J.: A process mining approach to analyse user behaviour. In: International Conference on Web Information Systems and Technologies, vol. 2, pp. 208–214. SCITEPRESS (2008)
Măruşter, L., Van Beest, N.R.: Redesigning business processes: a methodology based on simulation and process mining techniques. Knowl. Inf. Syst. 21, 267–297 (2009)
Nti, I.K., Zaman, A., Nyarko-Boateng, O., Adekoya, A.F., Keyeremeh, F.: A predictive analytics model for crop suitability and productivity with tree-based ensemble learning. Decis. Anal. J. 8, 100311 (2023). https://doi.org/10.1016/j.dajour.2023.100311. https://www.sciencedirect.com/science/article/pii/S2772662223001510
Pasquadibisceglie, V., Appice, A., Castellano, G., van der Aalst, W.M.P.: PROMISE: coupling predictive process mining to process discovery. Inf. Sci. 606, 250–271 (2022). https://doi.org/10.1016/J.INS.2022.05.052
Pravilovic, S., Appice, A., Malerba, D.: Process mining to forecast the future of running cases. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2013. LNCS (LNAI), vol. 8399, pp. 67–81. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08407-7_5
dos Santos, U.J.L., Pessin, G., da Costa, C.A., da Rosa Righi, R.: AgriPrediction: a proactive internet of things model to anticipate problems and improve production in agricultural crops. Comput. Electron. Agric. 161, 202–213 (2019)
Satir, O., Berberoglu, S.: Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crop Res 192, 134–143 (2016)
Springmann, M., et al.: Options for keeping the food system within environmental limits. Nature 562(7728), 519–525 (2018)
Surya, P., Aroquiaraj, I.L., et al.: Crop yield prediction in agriculture using data mining predictive analytic techniques. Int. J. Res. Anal. Rev. 5(4), 783–787 (2018)
Upcott, E.V., Henrys, P.A., Redhead, J.W., Jarvis, S.G., Pywell, R.F.: A new approach to characterising and predicting crop rotations using national-scale annual crop maps. Sci. Total Environ. 860, 160471 (2023)
Van Der Aalst, W.: Process mining: overview and opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 3(2), 1–17 (2012)
Yang, J., Ouyang, C., Dik, G., Corry, P., ter Hofstede, A.H.M.: Crop harvest forecast via agronomy-informed process modelling and predictive monitoring. In: Franch, X., Poels, G., Gailly, F., Snoeck, M. (eds.) CAiSE 2022. LNCS, vol. 13295, pp. 201–217. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07472-1_12
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fioretto, S., Ienco, D., Interdonato, R., Masciari, E. (2024). Integrating Predictive Process Monitoring Techniques in Smart Agriculture. In: Appice, A., Azzag, H., Hacid, MS., Hadjali, A., Ras, Z. (eds) Foundations of Intelligent Systems. ISMIS 2024. Lecture Notes in Computer Science(), vol 14670. Springer, Cham. https://doi.org/10.1007/978-3-031-62700-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-62700-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62699-9
Online ISBN: 978-3-031-62700-2
eBook Packages: Computer ScienceComputer Science (R0)