Quantum Circuits for Fixed Matching Substring Problems | SpringerLink
Skip to main content

Quantum Circuits for Fixed Matching Substring Problems

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1018))

Included in the following conference series:

Abstract

Quantum computational models enable the design of algorithms that are often significantly more efficient than their most competitive counterpart classical solutions. Recently, strides have been made to take advantage of the quantum computational framework in tackling problems arising in the context of text processing. Our work fits in such a research direction. We focused on challenges arising from string comparison problems and, specifically, on the alignment of fixed-length substrings that are found within two input strings. To be precise, given two input strings, x and y, both of length n, and a value \(d\leqslant n\), we want to verify the following conditions: the existence of a common prefix of length d, the presence of a common substring of length d starting at position j (with \(0\leqslant j<n\)) and, the presence of any common substring of length d starting at the same position of both strings. Such problems find applications as sub-procedures in a variety of problems concerning text processing and sequence analysis. Notably, our approach yields polylogarithmic solutions, a stark contrast to the linear complexity inherent in the best classical alternatives.

A preliminary version of this paper appeared on arXiv [6].

This work is partially funded by ICSC - Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing, co-founded by European Union - NextGenerationEU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 20591
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 31459
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balauca, S., Arusoaie, A.: Efficient constructions for simulating multi controlled quantum gates. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science, ICCS 2022. LNCS, vol. 13353, pp. 179–194. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08760-8_16

  2. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  Google Scholar 

  3. Bieganski, Riedl, Cartis, Retzel: Generalized suffix trees for biological sequence data: applications and implementation. In: 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences, vol. 5, pp. 35–44 (1994)

    Google Scholar 

  4. Cantone, D., Faro, S., Pavone, A.: Quantum string matching unfolded and extended. In: Kutrib, M., Meyer, U. (eds.) Reversible Computation, RC 2023. LNCS, vol. 13960, pp. 117–133. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38100-3_9

  5. Cantone, D., Faro, S., Pavone, A., Viola, C.: Longest common substring and longest palindromic substring \(\tilde{\cal{O}}(\sqrt{n})\) time (2023)

    Google Scholar 

  6. Cantone, D., Faro, S., Pavone, A., Viola, C.: Quantum circuits for fixed substring matching problems (2023)

    Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press (2001)

    Google Scholar 

  8. Fang, M., Fenner, S., Green, F., Homer, S., Zhang, Y.: Quantum lower bounds for fanout. Quantum Info. Comput. 6(1), 46–57 (2006)

    MathSciNet  Google Scholar 

  9. Le Gall, F., Seddighin, S.: Quantum meets fine-grained complexity: sublinear time quantum algorithms for string problems. Algorithmica 85(5), 1251–1286 (2023)

    Article  MathSciNet  Google Scholar 

  10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC 1996, pp. 212–219. ACM, New York (1996)

    Google Scholar 

  11. He, Y., Luo, M.-X., Zhang, E., Wang, H.-K., Wang, X.-F.: Decompositions of \(n\)-qubit Toffoli gates with linear circuit complexity. Int. J. Theoret. Phys. 56, 2350–2361 (2017)

    Article  MathSciNet  Google Scholar 

  12. Høyer, P., Spalek, R.: Quantum fan-out is powerful. Theor. Comput. 1, 81–103 (2005)

    Article  MathSciNet  Google Scholar 

  13. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press (2006)

    Google Scholar 

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press (2011)

    Google Scholar 

  15. Niroula, P., Nam, Y.: A quantum algorithm for string matching. npj Quantum Inf. 7, 37 (2021). https://doi.org/10.1038/s41534-021-00369-3

    Article  Google Scholar 

  16. Pavone, A., Viola, C.: The quantum circular shift operator. In: 24th Italian Conference on Theoretical Computer Science, Palermo, Italy, 15–18 September 2023 (2023)

    Google Scholar 

  17. Ramesh, H., Vinay, V.: String matching in \({\tilde{o}}(\sqrt{n}+\sqrt{m})\) quantum time. J. Discret. Algorithm. 1(1), 103–110 (2003)

    Article  MathSciNet  Google Scholar 

  18. Rasmussen, S.E., Groenland, K., Gerritsma, R., Schoutens, K., Zinner, N.T.: Single-step implementation of high-fidelity \(n\)-bit Toffoli gates. Phys. Rev. A 101, 022308 (2020)

    Article  Google Scholar 

  19. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  20. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_104

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Viola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cantone, D., Faro, S., Pavone, A., Viola, C. (2024). Quantum Circuits for Fixed Matching Substring Problems. In: Arai, K. (eds) Intelligent Computing. SAI 2024. Lecture Notes in Networks and Systems, vol 1018. Springer, Cham. https://doi.org/10.1007/978-3-031-62269-4_43

Download citation

Publish with us

Policies and ethics