Sequential Value Passing Yields a Kleene Theorem for Processes | SpringerLink
Skip to main content

Sequential Value Passing Yields a Kleene Theorem for Processes

  • Chapter
  • First Online:
Logics and Type Systems in Theory and Practice

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14560))

  • 224 Accesses

Abstract

Communication with value passing has received ample attention in process theory. Value passing through a sequential composition has received much less attention. In recent work, we found that sequential value passing is the essential ingredient to prove the analogue of the classical theorem of the equivalence of pushdown automata and context-free grammars in a setting of interactive processes and bisimulation. Subsequently, we found that the treatment of sequential value passing in the process setting can be simplified considerably. We report on this simplification here, and find another application of sequential value passing, viz. a Kleene theorem for processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 197–292. North-Holland/Elsevier (2001). https://doi.org/10.1016/b978-044482830-9/50021-7

  2. Baeten, J.C.M., Corradini, F., Grabmayer, C.A.: A characterization of regular expressions under bisimulation. J. ACM 54(2), 6–28 (2007). https://doi.org/10.1145/1219092.1219094

    Article  MathSciNet  Google Scholar 

  3. Baeten, J.C.M., Bergstra, J.A.: Process algebra with propositional signals. Theor. Comput. Sci. 177(2), 381–405 (1997). https://doi.org/10.1016/S0304-3975(96)00253-8

    Article  MathSciNet  Google Scholar 

  4. Baeten, J.C.M., Carissimo, C., Luttik, B.: Pushdown automata and context-free grammars in bisimulation semantics. Logical Methods Comput. Sci. 19, 15:1–15.32 (2023). https://doi.org/10.46298/LMCS-19(1:15)2023

  5. Baeten, J.C.M., Luttik, B., Muller, T., van Tilburg, P.: Expressiveness modulo bisimilarity of regular expressions with parallel composition. Math. Struct. Comput. Sci. 26(6), 933–968 (2016). https://doi.org/10.1017/S0960129514000309

    Article  MathSciNet  Google Scholar 

  6. Baeten, J.C.M., Luttik, B., Yang, F.: Sequential composition in the presence of intermediate termination (extended abstract). In: Peters, K., Tini, S. (eds.) Proceedings Combined 24th International Workshop on Expressiveness in Concurrency and 14th Workshop on Structural Operational Semantics and 14th Workshop on Structural Operational Semantics, EXPRESS/SOS 2017, Berlin, Germany, 4 September 2017. EPTCS, vol. 255, pp. 1–17 (2017). https://doi.org/10.4204/EPTCS.255.1. http://arxiv.org/abs/1709.00049

  7. Baeten, J.C.M., Verhoef, C.: A congruence theorem for structured operational semantics with predicates. In: Best, E. (ed.) CONCUR ’93, 4th International Conference on Concurrency Theory, Hildesheim, Germany, 23–26 August 1993, Proceedings. Lecture Notes in Computer Science, vol. 715, pp. 477–492. Springer (1993). https://doi.org/10.1007/3-540-57208-2_33

  8. Baeten, J.C., Basten, T., Reniers, M.: Process Algebra: Equational Theories of Communicating Processes, vol. 50. Cambridge university press, Cambridge (2010). https://doi.org/10.1017/CBO9781139195003

  9. Belder, A., Luttik, B., Baeten, J.: Sequencing and intermediate acceptance: axiomatisation and decidability of bisimilarity. In: Roggenbach, M., Sokolova, A. (eds.) 8th Conference on Algebra and Coalgebra in Computer Science, CALCO 2019. Leibniz International Proceedings in Informatics, LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.CALCO.2019.11

  10. Bergstra, J.A., Fokkink, W., Ponse, A.: Chapter 5 - process algebra with recursive operations. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 333–389. Elsevier Science, Amsterdam (2001). https://doi.org/10.1016/B978-044482830-9/50023-0

  11. Bloom, B.: When is partial trace equivalence adequate? Formal Aspects Comput. 6(3), 317–338 (1994). https://doi.org/10.1007/BF01215409

    Article  MathSciNet  Google Scholar 

  12. Bol, R.N., Groote, J.F.: The meaning of negative premises in transition system specifications. J. ACM 43(5), 863–914 (1996). https://doi.org/10.1145/234752.234756

    Article  MathSciNet  Google Scholar 

  13. Garavel, H.: Nested-unit petri nets: a structural means to increase efficiency and scalability of verification on elementary nets. In: Devillers, R.R., Valmari, A. (eds.) Application and Theory of Petri Nets and Concurrency - 36th International Conference, PETRI NETS 2015, Brussels, Belgium, 21–26 June 2015, Proceedings. Lecture Notes in Computer Science, vol. 9115, pp. 179–199. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-19488-2_9

  14. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996). https://doi.org/10.1145/233551.233556

    Article  MathSciNet  Google Scholar 

  15. van Glabbeek, R.J.: The meaning of negative premises in transition system specifications II. J. Log. Algebr. Program. 60–61, 229–258 (2004). https://doi.org/10.1016/j.jlap.2004.03.007

    Article  Google Scholar 

  16. Grabmayer, C., Fokkink, W.J.: A complete proof system for 1-free regular expressions modulo bisimilarity. CoRR abs/2004.12740 (2020). https://arxiv.org/abs/2004.12740

  17. Groote, J.F.: Transition system specifications with negative premises. Theor. Comput. Sci. 118(2), 263–299 (1993). https://doi.org/10.1016/0304-3975(93)90111-6

    Article  MathSciNet  Google Scholar 

  18. Groote, J.F., Ponse, A.: Process algebra with guards: combining hoare logic with process algebra. Formal Aspects Comput. 6(2), 115–164 (1994). https://doi.org/10.1007/BF01221097

    Article  Google Scholar 

  19. Hennessy, M.: Value-passing in process algebras. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 31–31. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039048

    Chapter  Google Scholar 

  20. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Automata Studies, pp. 3–41 (1956)

    Google Scholar 

  21. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443 (1997). https://doi.org/10.1145/256167.256195

    Article  Google Scholar 

  22. Luttik, B.: Divergence-preserving branching bisimilarity. In: Dardha, O., Rot, J. (eds.) Proceedings Combined 27th International Workshop on Expressiveness in Concurrency and 17th Workshop on Structural Operational Semantics, EXPRESS/SOS 2020, and 17th Workshop on Structural Operational Semantics, Online, 31 August 2020. EPTCS, vol. 322, pp. 3–11 (2020). https://doi.org/10.4204/EPTCS.322.2

  23. Milner, R.: A complete inference system for a class of regular behaviours. J. Comput. Syst. Sci. 28(3), 439–466 (1984). https://doi.org/10.1016/0022-0000(84)90023-0

    Article  MathSciNet  Google Scholar 

  24. Verhoef, C.: A congruence theorem for structured operational semantics with predicates and negative premises. Nord. J. Comput. 2(2), 274–302 (1995)

    MathSciNet  Google Scholar 

  25. Visser, E., Benaissa, Z.: A core language for rewriting. In: Kirchner, C., Kirchner, H. (eds.) 1998 International Workshop on Rewriting Logic and its Applications, WRLA 1998, Abbaye des Prémontrés at Pont-à-Mousson, France, September 1998. Electronic Notes in Theoretical Computer Science, vol. 15, pp. 422–441. Elsevier (1998). https://doi.org/10.1016/S1571-0661(05)80027-1

Download references

Acknowledgements

We are grateful to the two anonymous reviewers for their careful reviews; their comments and suggestions led to improvements in the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos C. M. Baeten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baeten, J.C.M., Luttik, B. (2024). Sequential Value Passing Yields a Kleene Theorem for Processes. In: Capretta, V., Krebbers, R., Wiedijk, F. (eds) Logics and Type Systems in Theory and Practice. Lecture Notes in Computer Science, vol 14560. Springer, Cham. https://doi.org/10.1007/978-3-031-61716-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61716-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61715-7

  • Online ISBN: 978-3-031-61716-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics