Using Petri Nets for Digital Twins Modeling and Deployment: A Power Wheelchair System Case Study | SpringerLink
Skip to main content

Using Petri Nets for Digital Twins Modeling and Deployment: A Power Wheelchair System Case Study

  • Conference paper
  • First Online:
Application and Theory of Petri Nets and Concurrency (PETRI NETS 2024)

Abstract

Ideally, safety-critical systems should be designed to avoid or be resilient in handling failures that may occur during their lifetime. For dependability purposes, IEC 62551 provides guidance on using the Petri net formalism for modeling and analysis of systems. Another concept that has been considered to ensure the reliability of systems and contribute to their overall safety is the digital twin (DT). A DT is a virtual counterpart that is seamlessly linked to a physical asset, both relying on data exchange for mirroring each other. DT has been used for the tracking, management, maintenance, and optimization of different systems. In some implementations, the DT emphasizes only the geometric models and their animation. To fully benefit from their usage, considering associated behavioral models is of paramount importance to allow full validation of the system. This paper proposes the application of Input-Output Place-Transition Petri Nets (IOPT-nets) to model and deploy both the physical and the virtual entities of the DT, contributing to a comprehensive use of Petri nets in the development of systems. The case study presented concerns the development of digital twins for power wheelchair systems using the IOPT-Tools framework to specify, validate, and implement it.

This work was financed by the Portuguese Agency FCT (Fundação para a Ciência e Tecnologia), in the framework of project UIDB/00066/2020, and under the PhD scholarship 2020.08462.BD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A failure is the consequence of an error caused by a fault.

  2. 2.

    Reliability is the ability of a system to perform the function for which it was designed.

  3. 3.

    Safety is the system’s ability to behave safely in the presence of unacceptable failures.

References

  1. Singh, L.K., Rajput, H.: Dependability analysis of safety critical real-time systems by using Petri nets. IEEE Trans. Control Syst. Technol. 26(2), 415–426 (2018). https://doi.org/10.1109/TCST.2017.2669147

    Article  MathSciNet  Google Scholar 

  2. Rausand, M.: Reliability of Safety-Critical Systems. Wiley, New York (2014). https://doi.org/10.1002/9781118776353

    Book  Google Scholar 

  3. IEC 61508:2010 CMV. https://webstore.iec.ch/publication/22273. Accessed 16 Jan 2024

  4. IEC 62551:2012. https://webstore.iec.ch/publication/7191. Accessed 16 Jan 2024

  5. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art. IEEE Trans. Industr. Inf. 15(4), 2405–2415 (2019). https://doi.org/10.1109/TII.2018.2873186

    Article  Google Scholar 

  6. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, challenges and open research. IEEE Access 8, 108952–108971 (2020). https://doi.org/10.1109/ACCESS.2020.2998358

    Article  Google Scholar 

  7. Grieves, M.W.: Product lifecycle management: the new paradigm for enterprises. Int. J. Prod. Dev. 2(1/2), 71–84 (2005). https://doi.org/10.1504/IJPD.2005.006669

    Article  Google Scholar 

  8. Tao, F., Zhang, M., Nee, A.Y.C.: Five-dimension digital twin modeling and its key technologies. Digit. Twin Driven Smart Manuf. 63–81 (2019). https://doi.org/10.1016/B978-0-12-817630-6.00003-5

  9. Gomes, L., Barros, J.P.: Refining IOPT Petri nets class for embedded system controller modeling. In: Proceedings of the IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, pp. 4720–4725. IEEE (2018). https://doi.org/10.1109/IECON.2018.8592921

  10. Girault, C., Valk, R.: Petri Nets for Systems Engineering - A Guide to Modeling, Verification, and Applications. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-05324-9

    Book  Google Scholar 

  11. Wolf, K.: Petri net model checking with LoLA 2. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 351–362. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4_18

    Chapter  Google Scholar 

  12. Pereira, F., Moutinho, F., Costa, A., Barros, J.P., Campos-Rebelo, R., Gomes, L.: IOPT-tools - from executable models to automatic code generation for embedded controllers development. In: Bernardinello, L., Petrucci, L. (eds.) PETRI NETS 2022. LNCS, vol. 13288, pp. 127–138. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06653-5_7

    Chapter  Google Scholar 

  13. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6_15

    Chapter  Google Scholar 

  14. Pereira, F., Gomes, L.: Cloud based IOPT Petri net simulator to test and debug embedded system controllers. In: Camarinha-Matos, L.M., Baldissera, T.A., Di Orio, G., Marques, F. (eds.) DoCEIS 2015. IAICT, vol. 450, pp. 165–175. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16766-4_18

    Chapter  Google Scholar 

  15. Pereira, F., Moutinho, F., Gomes, L., Ribeiro, J., Campos-Rebelo, R.: An IOPT-net state-space generator tool. In: Proceedings of the INDIN 2011 - 9th IEEE International Conference on Industrial Informatics, pp. 383–389. IEEE (2011). https://doi.org/10.1109/INDIN.2011.6034907

  16. Pereira, F., Moutinho, F., Gomes, L.: A syntax-independent code generation tool for IOPT-Petri net. In: Proceedings of the PN4TT 2023 - Algorithms Theories for the Analysis of Event Data and Petri Nets for Twin Transition. CEUR-WS (2023). https://ceur-ws.org/Vol-3424/paper6.pdf

  17. Pereira, F., Melo, A., Gomes, L.: Remote operation of embedded controllers designed using IOPT Petri-nets. In: Proceedings of the INDIN 2015 - 13th IEEE International Conference on Industrial Informatics, pp. 572–579. IEEE (2015). https://doi.org/10.1109/INDIN.2015.7281797

  18. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018). https://doi.org/10.1016/j.ifacol.2018.08.474

    Article  Google Scholar 

  19. Singh, M., Fuenmayor, E., Hinchy, E.P., Qiao, Y., Murray, N., Devine, D.: Digital twin: origin to future. Appl. Syst. Innov. 4(2), 36 (2021). https://doi.org/10.3390/asi4020036

    Article  Google Scholar 

  20. Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT context: a survey on technical features, scenarios, and architectural models. Proc. IEEE 108(10), 1785–1824 (2020). https://doi.org/10.1109/JPROC.2020.2998530

    Article  Google Scholar 

  21. Qi, Q., et al.: Enabling technologies and tools for digital twin. J. Manuf. Syst. 58(B), 3–21 (2021). https://doi.org/10.1016/j.jmsy.2019.10.001

    Article  Google Scholar 

  22. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019). https://doi.org/10.1109/ACCESS.2019.2953499

    Article  Google Scholar 

  23. Lagartinho-Oliveira, C., Moutinho, F., Gomes, L.: Digital twin in the provision of power wheelchairs context: support for technical phases and conceptual model. Computers 11(11), 166–180 (2022). https://doi.org/10.3390/computers11110166

    Article  Google Scholar 

  24. Alves, A., Lagartinho-Oliveira, C., Moutinho, F., Gomes, L.: ROS-based digital twin for power wheelchair. In: Proceedings of the ONCON 2022 - 1st Industrial Electronics Society Annual On-Line Conference. IEEE (2022). https://doi.org/10.1109/ONCON56984.2022.10127002

  25. Lagartinho-Oliveira, C., Moutinho, F., Gomes, L.: Support operation and maintenance of power wheelchairs with digital twins: the IoT and cloud-based data exchange. In: Camarinha-Matos, L.M., Ferrada, F. (eds.) DoCEIS 2023. IFIPAICT, vol. 678, pp. 191–202. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36007-7_14

    Chapter  Google Scholar 

  26. Faria, B.M., Ferreira, L., Reis, L.P., Lau, N., Petry, M., Soares, J.C.: Manual control for driving an intelligent wheelchair: a comparative study of joystick mapping methods. In: Proceedings of the IROS 2012 - Workshop on Progress, Challenges and Future Perspectives in Navigation and Manipulation Assistance for Robotic Wheelchairs (2012). https://paginas.fe.up.pt/~niadr/PUBLICATIONS/LIACC_publications_2011_12/pdf/OC59_Manual_Control_Driving_IW_Comparative_Study_Joystick_Mapping_Methods.pdf

  27. Mylinx Resources Hub. https://www.dynamiccontrols.com/resource-hub/mylinx-resources-hub. Accessed 29 Jan 2024

  28. MyPermobil App. https://permobilwebcdn.azureedge.net/media/v5vgqmbp/mypermobil_brochure_uk_200525_web.pdf. Accessed 29 Jan 2024

  29. Fleet Management. https://permobilwebcdn.azureedge.net/media/tyen1e5w/fleet-management-brochure.pdf. Accessed 29 Jan 2024

  30. Interactive Assist. https://www.quantumrehab.com/quantum-electronics/interactive-assist.asp. Accessed 29 Jan 2024

Download references

Acknowledges

The authors of this manuscript would like to thank the reviewers for the thoughtful comments and efforts they have put into improving it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Lagartinho-Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lagartinho-Oliveira, C., Moutinho, F., Gomes, L. (2024). Using Petri Nets for Digital Twins Modeling and Deployment: A Power Wheelchair System Case Study. In: Kristensen, L.M., van der Werf, J.M. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2024. Lecture Notes in Computer Science, vol 14628. Springer, Cham. https://doi.org/10.1007/978-3-031-61433-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61433-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61432-3

  • Online ISBN: 978-3-031-61433-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics