Abstract
This paper describes the intentions, setup, and live performance of a musical experiment that explores the complex intersection of human-technology interactions, music, and data collection. It brings art and data science together through a novel experimental music installation. The interdisciplinary project “The (Un)Answered Question: A Data Science Powered Music Experiment” explored integrating data science and biomedical imaging techniques with theatrical and compositional ideas. This combination leads to the creation of interactive music. Gestural interfaces and sensory input devices translate physiological behavior into music through digital signal processing. Ralph Waldo Emerson’s poem “The Sphynx” and Charles Ives’ composition “The Unanswered Question” serve as foundational elements to create a live remix of the original music using biometric data from performers and an audience of 180 people. The audience became a powerful instrument of musical expression. Each live performance was experiential and unique, depending on the different people involved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
registration number EA1/256/19, Ethikkomission, Ethikausschuss am Campus Charité - Mitte, Berlin, Germany.
- 4.
MAGNETOM, Siemens Healthineers, Erlangen, Germany.
- 5.
RFPA, Stolberg HF-Technik AG, Stolberg-Vicht, Germany.
- 6.
EasyACT, MRI.TOOLS GmbH, Berlin, Germany.
- 7.
- 8.
- 9.
- 10.
References
Albaghli, R., Anderson, K.M.: A vision for heart rate health through wearables. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, UbiComp 2016, pp. 1101–1105. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2968219.2972715
Baumol, W.J.: Performing Arts. In: Eatwell, J., Milgate, M., Newman, P. (eds.) The World of Economics. The New Palgrave. Palgrave Macmillan, London, pp. 544–548 (1991). https://doi.org/10.1007/978-1-349-21315-3_72
Bogaert, J., Dymarkowski, S., Taylor, A.M., Muthurangu, V.: Clinical cardiac MRI. Springer Science & Business Media (2012)
Borkenau, P., Ostendorf, F.: NEO-Fünf-Faktoren Inventar: Nach Costa u. McCrae; NEO-FFI. Hogrefe, Verlag f. Psychologie (2008)
Costa, P.T., McCrae, R.R.: Normal personality assessment in clinical practice: the NEO personality inventory. Psychol. Assess. 4(1), 5 (1992)
Dagar, D., Hudait, A., Tripathy, H.K., Das, M.N.: Automatic emotion detection model from facial expression. In: 2016 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), pp. 77–85 (2016). https://doi.org/10.1109/ICACCCT.2016.7831605
Dhakal, S.: MIBAND 4 - Python Library, October 2022. https://github.com/satcar77/miband4
Dzedzickis, A., Kaklauskas, A., Bucinskas, V.: Human emotion recognition: review of sensors and methods 20(3), 592 (2020). https://doi.org/10.3390/s20030592, https://www.mdpi.com/1424-8220/20/3/592
Eigentler, T.W., et al.: 32-channel self-grounded bow-tie transceiver array for cardiac MR at 7.0t. Magnetic Resonance in Medicine 86, 2862–2879 (2021). https://api.semanticscholar.org/CorpusID:235636158
Harvey, I.: bluepy, May 2021. https://github.com/IanHarvey/bluepy
Körner, A., et al.: Persönlichkeitsdiagnostik mit dem neo-fünf-faktoren-inventar: Die 30-item-kurzversion (neo-ffi-30). PPmP-Psychotherapie\(\cdot \) Psychosomatik\(\cdot \) Medizinische Psychologie 58(06), 238–245 (2008)
Niendorf, T., Barth, M., Kober, F., Trattnig, S.: From ultrahigh to extreme field magnetic resonance: where physics, biology and medicine meet 29(3), 309–311 (2016). https://doi.org/10.1007/s10334-016-0564-1
Perra, M., Brinkman, T.: Seeing science: using graphics to communicate research 12(10), e03786 (2021). https://doi.org/10.1002/ecs2.3786, https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecs2.3786
Rani, J., Garg, K.: Emotion detection using facial expressions-a review. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(4) (2014)
Serengil, S.I., Ozpinar, A.: Lightface: a hybrid deep face recognition framework. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 23–27. IEEE (2020). https://doi.org/10.1109/ASYU50717.2020.9259802
Serengil, S.I., Ozpinar, A.: Hyperextended lightface: a facial attribute analysis framework. In: 2021 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–4. IEEE (2021). https://doi.org/10.1109/ICEET53442.2021.9659697
Steinley, D.: K-means clustering: a half-century synthesis 59(1), 1–34 (2006). https://doi.org/10.1348/000711005X48266, https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1348/000711005X48266
Wright, M.J., Freed, A.: Open soundcontrol: a new protocol for communicating with sound synthesizers. In: International Conference on Mathematics and Computing (1997). https://api.semanticscholar.org/CorpusID:27393683
Acknowledgments
We acknowledge the Helmholtz Information & Data Science Academy (HIDA) for providing financial support that allowed a short-term research stay of Martin Hennecke at the German Aerospace Center (DLR) and at the Academy for Theatre and Digitality to work together with researchers from the Institute of Software Technology on the work described in this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
Author Martin Hennecke received scholarship grants from the Helmholtz Information & Data Science Academy (HIDA).
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
von Kurnatowski, L. et al. (2024). The (Un)Answered Question: A Data Science Powered Music Experiment. In: Rauterberg, M. (eds) Culture and Computing. HCII 2024. Lecture Notes in Computer Science, vol 14717. Springer, Cham. https://doi.org/10.1007/978-3-031-61147-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-61147-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61146-9
Online ISBN: 978-3-031-61147-6
eBook Packages: Computer ScienceComputer Science (R0)