Abstract
Developmental dyslexia (DLX) hinders the reading learning process of 5%–12% of the world’s population. Those affected by DLX show difficulties in oral phonological tasks, the biological underpinnings of which are still hotly debated. Current research has shown abnormal brain oscillatory coupling to speech rhythms, a procedure known as ‘entrainment’, key to encode phonological representations of speech units. Therefore, brain entrainment to speech rhythms could be used as features in an automatic diagnostic system. This work explores the use of Phase amplitude coupling (PAC) measures to quantify the entrainment between auditory rhythmic stimuli and Electroencephalography (EEG) signals. PAC features are used to train an interpretable machine learning system for predicting DLX in children, achieving accuracy over 90% for the entrainment between the 40 Hz stimulus and the Gamma band using Heights Ratio PAC. Analysis of the classification model reveal differences in the entrainment at regions typically associated to language, paving the way for an accurate and interpretable DLX diagnosis methodology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Canolty, R.T., et al.: High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793), 1626–1628 (2006)
Canolty, R.T., Knight, R.T.: The functional role of cross-frequency coupling. Trends Cogn. Sci. 14(11), 506–515 (2010)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)
Combrisson, E., Nest, T., Brovelli, A., Ince, R.A.A., Soto, J.L.P., Guillot, A., Jerbi, K.: Tensorpac: an open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals. PLoS Comput. Biol. 16(10), e1008302 (2020)
Di Liberto, G., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., Lalor, E.: Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. NeuroImage 175, 70–79 (2018)
Formoso, M.A., Ortiz, A., Martinez-Murcia, F.J., Gallego, N., Luque, J.L.: Detecting phase-synchrony connectivity anomalies in EEG signals: application to dyslexia diagnosis. Sensors 21(21), 7061 (2021)
Friederici, A.D., Gierhan, S.M.: The language network. Curr. Opin. Neurobiol. 23(2), 250–254 (2013)
Golland, P., Fischl, B.: Permutation tests for classification: towards statistical significance in image-based studies. In: Taylor, C., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 330–341. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45087-0_28
Górriz, J.M., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fusion 100, 101945 (2023)
Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)
Goswami, U.: Speech rhythm and language acquisition: an amplitude modulation phase hierarchy perspective. Ann. New York Acad. Sci. 1453, 67–78 (2019)
Hoeft, F., et al.: Neural systems predicting long-term outcome in dyslexia. Proc. Natl. Acad. Sci. 108(1), 361–366 (2011)
Ince, R.A., Giordano, B.L., Kayser, C., Rousselet, G.A., Gross, J., Schyns, P.G.: A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula. Hum. Brain Mapp. 38(3), 1541–1573 (2017)
Lakatos, P., Shah, A.S., Knuth, K.H., Ulbert, I., Karmos, G., Schroeder, C.E.: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94(3), 1904–1911 (2005)
Lehongre, K., Ramus, F., Villiermet, N., Schwartz, D., Giraud, A.L.: Altered low-gamma sampling in auditory cortex accounts for the three main facets of dyslexia. Neuron 72(6), 1080–1090 (2011)
Martinez-Murcia, F.J., Ortiz, A., Gorriz, J.M., Ramirez, J., Castillo-Barnes, D.: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders. IEEE J. Biomed. Health Inf. 24(1), 17–26 (2020)
Martinez-Murcia, F.J., et al.: EEG connectivity analysis using denoising autoencoders for the detection of dyslexia. Int. J. Neural Syst. 30(07), 2050037 (2020)
Molinaro, N., Lizarazu, M., Lallier, M., Bourguignon, M., Carreiras, M.: Out-of-synchrony speech entrainment in developmental dyslexia. Hum. Brain Mapp. 37(8), 2767–2783 (2016)
Mormann, F., Fell, J., Axmacher, N., Weber, B., Lehnertz, K., Elger, C.E., Fernández, G.: Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus 15(7), 890–900 (2005)
Ortiz, A., Martinez-Murcia, F.J., Luque, J.L., Giménez, A., Morales-Ortega, R., Ortega, J.: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach. Int. J. Neural Syst. 30(07), 2050029 (2020)
Peterson, R., Pennington, B.: Developmental dyslexia. Lancet 379, 1997–2007 (2012)
Shaywitz, S.E., et al.: Neural systems for compensation and persistence: young adult outcome of childhood reading disability. Biol. Psychiat. 54(1), 25–33 (2003)
Tort, A.B., Komorowski, R., Eichenbaum, H., Kopell, N.: Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104(2), 1195–1210 (2010)
Acknowledgements
This research is part of the projects PID2022-137629OA-I00, PID2022-137461NB-C32 and PID2022-137451OB-I00, funded by the MICIU/AEI/10.13039/501100011033 and by “ERDF/EU”, and the C-ING-183-UGR23 project, cofunded by the Consejería de Universidad, Investigación e Innovación and by European Union, funded by Programa FEDER Andalucía 2021–2027. Work by F.J.M.M. is part of the grant RYC2021-030875-I funded by MICIU/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gallego-Molina, N. et al. (2024). A Survey on EEG Phase Amplitude Coupling to Speech Rhythm for the Prediction of Dyslexia. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-61140-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61139-1
Online ISBN: 978-3-031-61140-7
eBook Packages: Computer ScienceComputer Science (R0)