A Survey on EEG Phase Amplitude Coupling to Speech Rhythm for the Prediction of Dyslexia | SpringerLink
Skip to main content

A Survey on EEG Phase Amplitude Coupling to Speech Rhythm for the Prediction of Dyslexia

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Abstract

Developmental dyslexia (DLX) hinders the reading learning process of 5%–12% of the world’s population. Those affected by DLX show difficulties in oral phonological tasks, the biological underpinnings of which are still hotly debated. Current research has shown abnormal brain oscillatory coupling to speech rhythms, a procedure known as ‘entrainment’, key to encode phonological representations of speech units. Therefore, brain entrainment to speech rhythms could be used as features in an automatic diagnostic system. This work explores the use of Phase amplitude coupling (PAC) measures to quantify the entrainment between auditory rhythmic stimuli and Electroencephalography (EEG) signals. PAC features are used to train an interpretable machine learning system for predicting DLX in children, achieving accuracy over 90% for the entrainment between the 40 Hz stimulus and the Gamma band using Heights Ratio PAC. Analysis of the classification model reveal differences in the entrainment at regions typically associated to language, paving the way for an accurate and interpretable DLX diagnosis methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Canolty, R.T., et al.: High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793), 1626–1628 (2006)

    Article  Google Scholar 

  2. Canolty, R.T., Knight, R.T.: The functional role of cross-frequency coupling. Trends Cogn. Sci. 14(11), 506–515 (2010)

    Article  Google Scholar 

  3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  4. Combrisson, E., Nest, T., Brovelli, A., Ince, R.A.A., Soto, J.L.P., Guillot, A., Jerbi, K.: Tensorpac: an open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals. PLoS Comput. Biol. 16(10), e1008302 (2020)

    Article  Google Scholar 

  5. Di Liberto, G., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., Lalor, E.: Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. NeuroImage 175, 70–79 (2018)

    Article  Google Scholar 

  6. Formoso, M.A., Ortiz, A., Martinez-Murcia, F.J., Gallego, N., Luque, J.L.: Detecting phase-synchrony connectivity anomalies in EEG signals: application to dyslexia diagnosis. Sensors 21(21), 7061 (2021)

    Article  Google Scholar 

  7. Friederici, A.D., Gierhan, S.M.: The language network. Curr. Opin. Neurobiol. 23(2), 250–254 (2013)

    Article  Google Scholar 

  8. Golland, P., Fischl, B.: Permutation tests for classification: towards statistical significance in image-based studies. In: Taylor, C., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 330–341. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45087-0_28

    Chapter  Google Scholar 

  9. Górriz, J.M., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fusion 100, 101945 (2023)

    Article  Google Scholar 

  10. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)

    Article  Google Scholar 

  11. Goswami, U.: Speech rhythm and language acquisition: an amplitude modulation phase hierarchy perspective. Ann. New York Acad. Sci. 1453, 67–78 (2019)

    Article  Google Scholar 

  12. Hoeft, F., et al.: Neural systems predicting long-term outcome in dyslexia. Proc. Natl. Acad. Sci. 108(1), 361–366 (2011)

    Article  Google Scholar 

  13. Ince, R.A., Giordano, B.L., Kayser, C., Rousselet, G.A., Gross, J., Schyns, P.G.: A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula. Hum. Brain Mapp. 38(3), 1541–1573 (2017)

    Article  Google Scholar 

  14. Lakatos, P., Shah, A.S., Knuth, K.H., Ulbert, I., Karmos, G., Schroeder, C.E.: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94(3), 1904–1911 (2005)

    Article  Google Scholar 

  15. Lehongre, K., Ramus, F., Villiermet, N., Schwartz, D., Giraud, A.L.: Altered low-gamma sampling in auditory cortex accounts for the three main facets of dyslexia. Neuron 72(6), 1080–1090 (2011)

    Article  Google Scholar 

  16. Martinez-Murcia, F.J., Ortiz, A., Gorriz, J.M., Ramirez, J., Castillo-Barnes, D.: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders. IEEE J. Biomed. Health Inf. 24(1), 17–26 (2020)

    Article  Google Scholar 

  17. Martinez-Murcia, F.J., et al.: EEG connectivity analysis using denoising autoencoders for the detection of dyslexia. Int. J. Neural Syst. 30(07), 2050037 (2020)

    Article  Google Scholar 

  18. Molinaro, N., Lizarazu, M., Lallier, M., Bourguignon, M., Carreiras, M.: Out-of-synchrony speech entrainment in developmental dyslexia. Hum. Brain Mapp. 37(8), 2767–2783 (2016)

    Article  Google Scholar 

  19. Mormann, F., Fell, J., Axmacher, N., Weber, B., Lehnertz, K., Elger, C.E., Fernández, G.: Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus 15(7), 890–900 (2005)

    Article  Google Scholar 

  20. Ortiz, A., Martinez-Murcia, F.J., Luque, J.L., Giménez, A., Morales-Ortega, R., Ortega, J.: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach. Int. J. Neural Syst. 30(07), 2050029 (2020)

    Article  Google Scholar 

  21. Peterson, R., Pennington, B.: Developmental dyslexia. Lancet 379, 1997–2007 (2012)

    Article  Google Scholar 

  22. Shaywitz, S.E., et al.: Neural systems for compensation and persistence: young adult outcome of childhood reading disability. Biol. Psychiat. 54(1), 25–33 (2003)

    Article  Google Scholar 

  23. Tort, A.B., Komorowski, R., Eichenbaum, H., Kopell, N.: Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104(2), 1195–1210 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of the projects PID2022-137629OA-I00, PID2022-137461NB-C32 and PID2022-137451OB-I00, funded by the MICIU/AEI/10.13039/501100011033 and by “ERDF/EU”, and the C-ING-183-UGR23 project, cofunded by the Consejería de Universidad, Investigación e Innovación and by European Union, funded by Programa FEDER Andalucía 2021–2027. Work by F.J.M.M. is part of the grant RYC2021-030875-I funded by MICIU/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Martinez-Murcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gallego-Molina, N. et al. (2024). A Survey on EEG Phase Amplitude Coupling to Speech Rhythm for the Prediction of Dyslexia. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics