Measuring Spatial Behaviour and Cognition: A Method Based on Trajectories Analysis and Supported by Technology and Artificial Intelligence | SpringerLink
Skip to main content

Measuring Spatial Behaviour and Cognition: A Method Based on Trajectories Analysis and Supported by Technology and Artificial Intelligence

  • Conference paper
  • First Online:
Bioinspired Systems for Translational Applications: From Robotics to Social Engineering (IWINAC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14675))

  • 395 Accesses

Abstract

Spatial cognition is a fundamental cognitive process for adapting to the environment, and it has been extensively researched in humans, animals, and artificial agents using various methods, such as clinical and comparative studies. Spatial cognition and related skills can be deduced from behaviours, such as reaching for an object, returning to a familiar area after an extended run, or identifying the corner in an enclosure where food is hidden.

In this paper, we will propose a method based on trajectory analysis with index calculation and we will illustrate two examples of applying this method 1) to a neuro-psychological test and 2) analyzing the performance of agents in a behavioural task. The results suggest that this method can complement traditional measures of spatial cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Argiuolo, A., Ponticorvo, M.: Analysing E-BTT data: the E-TAN ANALYST prototype. In: 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), pp. 367–371. IEEE (2022)

    Google Scholar 

  2. Argiuolo, A., Ponticorvo, M.: E-TAN platform and E-baking tray task potentialities: new ways to solve old problems. In: PSYCHOBIT (2020)

    Google Scholar 

  3. Argiuolo, A., Somma, F., Bartolomeo, P., Gigliotta, O., Ponticorvo, M.: Organization measures in the Enhanced Baking Tray Task. Front. Psychol. 13, 1039064 (2022)

    Article  Google Scholar 

  4. Argiuolo, A., Somma, F., Bartolomeo, P., Gigliotta, O., Ponticorvo, M.: Indexes for the E-baking tray task: a look on laterality, verticality and quality of exploration. Brain Sci. 12(3), 401 (2022)

    Article  Google Scholar 

  5. Argiuolo, A., Somma, F., Casella, M., Gigliotta, O., Ponticorvo, M.: Putting the pieces together: exploring the dimensionality of enhanced baking tray task indexes in school-aged children. In: 2023 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE). IEEE (in press)

    Google Scholar 

  6. Bailey, M.J., Riddoch, M.J., Crome, P.: Test-retest stability of three tests for unilateral visual neglect in patients with stroke: Star Cancellation, Line Bisection, and the Baking Tray Task. Neuropsychol. Rehabil. 14(4), 403–419 (2004)

    Article  Google Scholar 

  7. Benhamou, S., Poucet, B.: Landmark use by navigating rats (Rattus norvegicus) contrasting geometric and featural information. J. Comp. Psychol. 112(3), 317 (1998)

    Article  Google Scholar 

  8. Cerrato, A., Ponticorvo, M., Gigliotta, O., Bartolomeo, P., Miglino, O.: The assessment of visuospatial abilities with tangible interfaces and machine learning. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019. LNCS, vol. 11486, pp. 78–87. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19591-5_9

    Chapter  Google Scholar 

  9. Cerrato, A., Ponticorvo, M.: Enhancing neuropsychological testing with gamification and tangible interfaces: the baking tray task. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10338, pp. 147–156. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59773-7_16

    Chapter  Google Scholar 

  10. Cerrato, A., et al.: E-TAN, a technology-enhanced platform with tangible objects for the assessment of visual neglect: a multiple single-case study. Neuropsychol. Rehabil. 31(7), 1130–1144 (2021)

    Article  Google Scholar 

  11. Cerrato, A., Ponticorvo, M., Gigliotta, O., Bartolomeo, P., Miglino, O.: Btt-scan: uno strumento per la valutazione della negligenza spaziale unilaterale. Sistemi intelligenti 31(2), 253–270 (2019)

    Google Scholar 

  12. Cheng, K., Huttenlocher, J., Newcombe, N.S.: 25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychon. Bull. Rev. 20, 1033–1054 (2013)

    Article  Google Scholar 

  13. Facchin, A., Beschin, N., Pisano, A., Reverberi, C.: Normative data for distal line bisection and baking tray task. Neurol. Sci. 37, 1531–1536 (2016)

    Article  Google Scholar 

  14. Gigliotta, O., Bartolomeo, P., Miglino, O.: Approaching neuropsychological tasks through adaptive neurorobots. Connection Sci. 27(2), 153–163 (2015). https://doi.org/10.1080/09540091.2014.968094

  15. Gigliotta, O., Malkinson, T.S., Miglino, O., Bartolomeo, P.: Pseudoneglect in visual search: behavioral evidence and connectional constraints in simulated neural circuitry. eNeuro 4(6) (2017). https://doi.org/10.1523/ENEURO.0154-17.2017

  16. Gouteux, S., Thinus-Blanc, C., Vauclair, J.: Rhesus monkeys use geometric and nongeometric information during a reorientation task. J. Exp. Psychol. Gen. 130(3), 505 (2001)

    Article  Google Scholar 

  17. Gouteux, S., Spelke, E.S.: Children’s use of geometry and landmarks to reorient in an open space. Cognition 81(2), 119–148 (2001)

    Article  Google Scholar 

  18. Hermer, L., Spelke, E.: Modularity and development: the case of spatial reorientation. Cognition 61(3), 195–232 (1996)

    Article  Google Scholar 

  19. Hirtle, S.C.: Geographical Design: Spatial Cognition and Geographical Information Science. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02194-7

    Book  Google Scholar 

  20. Hromada, S.J., et al.: Using movement to inform conservation corridor design for Mojave desert tortoise. Mov. Ecol. 8(1), 1–18 (2020)

    Article  Google Scholar 

  21. Kedilioglu, O., Bocco, T.M., Landesberger, M., Rizzo, A., Franke, J.: ArUcoE: enhanced ArUco marker. In: 2021 21st International Conference on Control, Automation and Systems (ICCAS), pp. 878–881. IEEE (2021)

    Google Scholar 

  22. Kelly, D.M., Spetch, M.L., Heth, C.D.: Pigeons’(Columba livia) encoding of geometric and featural properties of a spatial environment. J. Comp. Psychol. 112(3), 259 (1998)

    Article  Google Scholar 

  23. Luongo, M., Simeoli, R., Marocco, D., Ponticorvo, M.: The design of a game-based software for children with autism spectrum disorder. In: 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), pp. 318–322. IEEE (2022)

    Google Scholar 

  24. Margules, J., Gallistel, C.R.: Heading in the rat: determination by environmental shape. Animal Learn. Beh. 16(4), 404–410 (1988)

    Article  Google Scholar 

  25. Morrow, L., Ratcliff, G.: Neuropsychology of spatial cognition: evidence from cerebral lesions. In: Spatial Cognition, pp. 5–32. Psychology Press (2022)

    Google Scholar 

  26. Palumbo, F., Cerrato, A., Ponticorvo, M., Gigliotta, O., Bartolomeo, P., Miglino, O.: Clustering of behavioral spatial trajectories in Neuropsychological Assessment. In: Smart Statitistcs for Smart Applications, pp. 463–470. Pearson (2019)

    Google Scholar 

  27. Ponticorvo, M., Coccorese, M., Gigliotta, O., Bartolomeo, P., Marocco, D.: Artificial intelligence applied to spatial cognition assessment. In: International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 407–415. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06242-1_40

  28. Ponticorvo, M., Miglino, O.: Encoding geometric and non-geometric information: a study with evolved agents. Anim. Cogn. 13, 157–174 (2010)

    Article  Google Scholar 

  29. Ponticorvo, M., Walker, R., Miglino, O.: Evolutionary robotics as a tool to investigate spatial cognition in artificial and natural systems. In: Artificial Cognition Systems, pp. 210–237. IGI Global (2007)

    Google Scholar 

  30. Ponticorvo, M., Miglino, O.: Is language necessary to merge geometric and non-geometric spatial cues? The case of the “BLUE-WALL TASK”. In: Modeling Language, Cognition And Action, pp. 209–213 (2005)

    Google Scholar 

  31. Somma, F., et al.: Further to the left: Stress-induced increase of spatial pseudoneglect during the COVID-19 lockdown. Front. Psychol. 12, 573846 (2021)

    Google Scholar 

  32. Somma F., et al.: Valutazione dello pseudoneglect mediante strumenti tangibili e digitali. Sistemi Intelligenti 32, 533–549 (2020). https://doi.org/10.1422/99075

  33. Sovrano, V.A., Bisazza, A., Vallortigara, G.: Modularity as a fish (Xenotoca eiseni) views it: conjoining geometric and nongeometric information for spatial reorientation. J. Exp. Psychol. Anim. Behav. Process. 29(3), 199 (2003)

    Article  Google Scholar 

  34. Tham, K.: The baking tray task: a test of spatial neglect. Neuropsychol. Rehabil. 6(1), 19–26 (1996)

    Article  MathSciNet  Google Scholar 

  35. Vallortigara, G., Zanforlin, M., Pasti, G.: Geometric modules in animals’ spatial representations: a test with chicks (Gallus gallus domesticus). J. Comp. Psychol. 104(3), 248 (1990)

    Article  Google Scholar 

  36. Waller, D.E., Nadel, L.E.: Handbook of spatial cognition (pp. x-309). American Psychological Association (2013)

    Google Scholar 

  37. Williams, H.J., et al.: Optimising the use of bio-loggers for movement ecology research. J. Anim. Ecol. 89, 186–206 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Ponticorvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ponticorvo, M., Luongo, M., Argiuolo, A., Gigliotta, O. (2024). Measuring Spatial Behaviour and Cognition: A Method Based on Trajectories Analysis and Supported by Technology and Artificial Intelligence. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61137-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61136-0

  • Online ISBN: 978-3-031-61137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics