Energy Flux Prediction Using an Ordinal Soft Labelling Strategy | SpringerLink
Skip to main content

Energy Flux Prediction Using an Ordinal Soft Labelling Strategy

  • Conference paper
  • First Online:
Bioinspired Systems for Translational Applications: From Robotics to Social Engineering (IWINAC 2024)

Abstract

This paper addresses the problem of short-term energy flux prediction. For this purpose, we propose the use of an ordinal classification neural network model optimised using the triangular regularised categorical cross-entropy loss, termed MLP-T. This model is based on a soft labelling strategy, that replaces the crisp 0/1 labels on the loss computation with soft versions encoding the ordinal information. This soft label encoding leverages the inherent ordering between categories to reduce the cost of ordinal classification errors and improve model generalisation performance. Specifically, the soft labels for each target class are derived from triangular probability distributions. To assess the performance of MLP-T, six datasets built from buoy measurements and reanalysis data have been used. MLP-T has been compared to nominal and ordinal classification techniques in terms of four performance metrics. MLP-T achieved an outstanding performance across all datasets and performance metrics, securing the best mean results. Despite the imbalanced nature of the problem, which makes the ordinal classification task notably difficult, MLP-T achieved good results in all classes across all datasets, including the underrepresented classes. Remarkably, MLP-T was the only approach that correctly classified at least one instance of the minority class in all datasets. Furthermore, MLP-T secured the top rank in all cases, confirming its suitability for the problem addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ayllón-Gavilán, R., Guijo-Rubio, D., Gutiérrez, P.A., Bagnall, A., Hervás-Martínez, C.: Convolutional and deep learning based techniques for time series ordinal classification. arXiv preprint arXiv:2306.10084 (2023)

  2. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: 9th International Conference on Intelligent Systems Design and Applications, pp. 283–287 (2009)

    Google Scholar 

  3. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition, pp. 3121–3124. IEEE (2010)

    Google Scholar 

  4. Cruz-Ramírez, M., Hervás-Martínez, C., Sánchez-Monedero, J., Gutiérrez, P.A.: Metrics to guide a multi-objective evolutionary algorithm for ordinal classification. Neurocomputing 135, 21–31 (2014)

    Article  Google Scholar 

  5. Fernández, J.C., Martínez, F.J., Hervás, C., Gutiérrez, P.A.: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks. IEEE Trans. Neural Netw. 21(5), 750–770 (2010)

    Article  Google Scholar 

  6. Gómez-Orellana, A., Guijo-Rubio, D., Gutiérrez, P., Hervás-Martínez, C.: Simultaneous short-term significant wave height and energy flux prediction using zonal multi-task evolutionary artificial neural networks. Ren Energy 184, 975–989 (2022)

    Article  Google Scholar 

  7. Gómez-Orellana, A.M., Fernández, J.C., Dorado-Moreno, M., Gutiérrez, P.A., Hervás-Martínez, C.: Building suitable datasets for soft computing and machine learning techniques from meteorological data integration: a case study for predicting significant wave height and energy flux. Energies 14(2), 468 (2021)

    Article  Google Scholar 

  8. Guijo-Rubio, D., et al.: Ordinal regression algorithms for the analysis of convective situations over Madrid-Barajas airport. Atmos. Res. 236, 104798 (2020)

    Article  Google Scholar 

  9. Gutiérrez, P.A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F., Hervas-Martinez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2015)

    Article  Google Scholar 

  10. Kistler, R., et al.: The NCEP-NCAR 50-year reanalysis. Bull. Am. Meteor. Soc. 82(2), 247–267 (2001)

    Article  Google Scholar 

  11. Liu, X., et al.: Unimodal regularized neuron stick-breaking for ordinal classification. Neurocomputing 388(7), 34–44 (2020)

    Article  Google Scholar 

  12. National Data Buoy Center: National Oceanic and Atmospheric Administration of the USA. http://www.ndbc.noaa.gov/ (2023). Accessed 13th Dec 2023

  13. Rennie, J.D., Srebro, N.: Loss functions for preference levels: regression with discrete ordered labels. In: IJCAI Multidisciplinary Workshop on Advances in Preference Handling. vol. 1, pp. 1–6. AAAI Press, Menlo Park, CA (2005)

    Google Scholar 

  14. Vargas, V.M., Gutiérrez, P.A., Barbero-Gómez, J., Hervás-Martínez, C.: Soft labelling based on triangular distributions for ordinal classification. Inform. Fusion 93, 258–267 (2023)

    Article  Google Scholar 

  15. Vargas, V.M., Gutiérrez, P.A., Hervás-Martínez, C.: Unimodal regularisation based on beta distribution for deep ordinal regression. Pat Recog 122, 1–10 (2022)

    Google Scholar 

  16. Vargas, V.M., Gutiérrez, P.A., Rosati, R., Romeo, L., Frontoni, E., Hervás-Martínez, C.: Deep learning based hierarchical classifier for weapon stock aesthetic quality control assessment. Comput. Ind. 144, 103786 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

The present study has been supported by the “Agencia Estatal de Investigación (España)” (grant ref.: PID2020-115454GB-C22/AEI/10.13039/501100011033) and the Spanish Ministry of Science and Innovation (grant refs.: PID2020-115454GB-C21 and TED2021-131777B-C22). Antonio Manuel Gómez-Orellana has been supported by “Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía” (grant ref.: PREDOC-00489). David Guijo-Rubio has been supported by the “Agencia Estatal de Investigación (España)” MCIU/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR (grant ref.: JDC2022-048378-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Vargas .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez-Orellana, A.M. et al. (2024). Energy Flux Prediction Using an Ordinal Soft Labelling Strategy. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61137-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61136-0

  • Online ISBN: 978-3-031-61137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics