A Genetic Approach to Green Flexible Job Shop Problem Under Uncertainty | SpringerLink
Skip to main content

A Genetic Approach to Green Flexible Job Shop Problem Under Uncertainty

  • Conference paper
  • First Online:
Bioinspired Systems for Translational Applications: From Robotics to Social Engineering (IWINAC 2024)

Abstract

Flexible job shop scheduling problem with energy and makespan minimization objectives, and uncertain processing times that are modeled with intervals is addressed in this work. The problem is solved by a genetic algorithm using a lexicographic goal programming approach and the results evaluated with respect to the lower and upper bounds that come from various sources and methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dauzère-Pérès, S., Paulli, J.: An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search. Ann. Oper. Res. 70, 281–306 (1997)

    Article  MathSciNet  Google Scholar 

  2. Díaz, H., González-Rodríguez, I., Palacios, J.J., Díaz, I., Vela, C.R.: A genetic approach to the job shop scheduling problem with interval uncertainty. In: Lesot, M.-J., Vieira, S., Reformat, M.Z., Carvalho, J.P., Wilbik, A., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2020. CCIS, vol. 1238, pp. 663–676. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50143-3_52

    Chapter  Google Scholar 

  3. Díaz, H., Palacios, J.J., González-Rodríguez, I., Vela, C.R.: An elitist seasonal artificial bee colony algorithm for the interval job shop. Integrated Comput.-Aided Eng. 30(3), 223–242 (2023)

    Article  Google Scholar 

  4. Díaz, H., Palacios, J.J., González-Rodríguez, I., Vela, C.R.: Fast elitist ABC for makespan optimisation in interval JSP. Nat. Comput. 22(4), 645–657 (2023)

    Article  MathSciNet  Google Scholar 

  5. García Gómez, P., González-Rodríguez, I., Vela, C.R.: Reducing energy consumption in fuzzy flexible job shops using memetic search. LNCS, vol. 13259, pp. 140–150 (2022)

    Google Scholar 

  6. García Gómez, P., González-Rodríguez, I., Vela, C.R.: Enhanced memetic search for reducing energy consumption in fuzzy flexible job shops. Integr. Comput.-Aided Eng. 30(2), 151–167 (2023)

    Article  Google Scholar 

  7. González, M.A., Oddi, A., Rasconi, R.: Multi-objective optimization in a job shop with energy costs through hybrid evolutionary techniques. In: Proceedings of ICAPS 2017, pp. 140–148 (2017)

    Google Scholar 

  8. Karmakar, S., Bhunia, A.K.: A comparative study of different order relations of intervals. Reliable Comput. 16, 38–72 (2012)

    MathSciNet  Google Scholar 

  9. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling: 20+ years of scheduling with constraints at IBM/ILOG. Constraints 23(2), 210–250 (2018)

    Article  MathSciNet  Google Scholar 

  10. Lei, D.: Interval job shop scheduling problems. Int. J. Adv. Manuf. Technol. 60, 291–301 (2012)

    Article  Google Scholar 

  11. Lei, D.: Multi-objective artificial bee colony for interval job shop scheduling with flexible maintenance. Int. J. Adv. Manuf. Technol. 66, 1835–1843 (2013)

    Article  Google Scholar 

  12. Lei, D., Guo, X.: An effective neighborhood search for scheduling in dual-resource constrained interval job shop with environmental objective. Int. J. Prod. Econ. 159, 296–303 (2015)

    Article  Google Scholar 

  13. Lenstra, J., Rinnooy Kan, A., Brucker, P.: Complexity of machine scheduling problems. In: Hammer, P., Johnson, E., Korte, B., Nemhauser, G. (eds.) Studies in Integer Programming, Annals of Discrete Mathematics, vol. 1, pp. 343–362. Elsevier (1977). https://doi.org/10.1016/S0167-5060(08)70743-X

  14. Li, X., Gao, L., Wang, W., Wang, C., Wen, L.: Particle swarm optimization hybridized with genetic algorithm for uncertain integrated process planning and scheduling with interval processing time. Comput. Ind. Eng. 135, 1036–1046 (2019)

    Article  Google Scholar 

  15. Mastrolilli, M., Gambardella, L.M.: Effective neighbourhood functions for the flexible job shop problem. J. Sched. 3(1), 3–20 (2000)

    Article  MathSciNet  Google Scholar 

  16. Palacios, J.J., González, M.A., Vela, C.R., González-Rodríguez, I., Puente, J.: Genetic tabu search for the fuzzy flexible job shop problem. Comput. Oper. Res. 54, 74–89 (2015)

    Article  MathSciNet  Google Scholar 

  17. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, vol. 29. Springer (2012)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the Spanish Government under research grants TED2021-131938B-I00 and PID2022-141746OB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Palacios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Afsar, S., Puente, J., Palacios, J.J., González-Rodríguez, I., Vela, C.R. (2024). A Genetic Approach to Green Flexible Job Shop Problem Under Uncertainty. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61137-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61136-0

  • Online ISBN: 978-3-031-61137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics