Abstract
Navigating the research process, from problem identification to argumentation construction, challenges novice researchers. This study introduces RPML (Research Problem Modeling Language), a metamodel and ontology designed to address these challenges by visually representing key aspects of research argumentation. RPML enhances clarity and coherence in research discourse by providing researchers with a visual representation of argumentation for a research problem. RPML is represented as a specialization of the OMG Business Motivation Model and Toulmin’s argumentation model approach. This enables researchers to gain a comprehensive overview of their research projects, identify research problems, build robust argumentation, and select suitable research strategies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Afonina, V., Hinkelmann, K., Montecchiari, D.: Enriching enterprise architecture models with healthcare domain knowledge. In: Ruiz, M., Soffer, P. (eds.) CAiSE 2023. LNCS, vol. 482, pp. 17–28. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34985-0_2
Andrews, R.: Models of argumentation in educational discourse. Text-Interdisc. J. Study Discourse 25, 107–127 (2005). https://doi.org/10.1515/text.2005.25.1.107
Conklin, J., Begeman, M.L.: gIBIS: a hypertext tool for exploratory policy discussion. ACM Trans. Inf. Syst. (TOIS) 6(4), 303–331 (1988)
Conklin, J., Begeman, M.L.: gIBIS: a tool for all reasons. J. Am. Soc. Inf. Sci. 40(3), 200–213 (1989)
De Moor, A., Weigand, H.: Effective communication in virtual adversarial collaborative communities. J. Commun. Inform. 2(2) (2006)
Ellis, T.J., Levy, Y.: Framework of problem-based research: a guide for novice researchers on the development of a research-worthy problem. Informing Sci. Int. J. Emerg. Transdiscipl. 11, 017–033 (2008). https://doi.org/10.28945/438
Guizzardi, G.: Conceptualizations, modeling languages, and (meta) models. In: Databases and Information Systems IV: Selected Papers from the Seventh International Baltic Conference, DB &IS’2006 (2007)
Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19(2), 4 (2007)
Hinkelmann, K., Afonina, V., Montecchiari, D.: Visualizing argumentation for research problem and research design. In: 19th International Conference on Design Science Research in Information Systems and Technology (DESRIST 2024). Trollhättan (2024)
Horváth, I.: Structuring the process of design research-a necessary step towards ensuring scientific rigor. In: DS 75-2: Proceedings of the 19th International Conference on Engineering Design (ICED13), Design for Harmonies, vol. 2: Design Theory and Research Methodology, Seoul, Korea, 19-22.08. 2013 (2013)
Karagiannis, D., Kühn, H., et al.: Metamodelling platforms. In: EC-web, p. 182. Citeseer (2002)
Karagiannis, D., Lee, M., Hinkelmann, K., Utz, W. (eds.): Domain-Specific Conceptual Modeling: Concepts, Methods and ADOxx Tools. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93547-4
Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.): Domain- Specific Conceptual Modeling. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39417-6
Keet, C.M.: An Introduction to Ontology Engineering. University of Cape Town, Cape Town (2018)
Khambete, P.: Adaptation of Toulmin’s model of argumentation for establishing Rigour and relevance in design research. In: Chakrabarti, A. (ed.) Research into Design for a Connected World. SIST, vol. 134, pp. 3–13. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5974-3_1
Kunz, W., Rittel, H.: Issues as elements of information systems. Institute of Urban and Regional Development, University of California, Berkeley, California, Technical report (1970)
Laurenzi, E., Hinkelmann, K., Montecchiari, D., Goel, M.: Agile visualization in design thinking. In: Dornberger, R. (ed.) New Trends in Business Information Systems and Technology. SSDC, vol. 294, pp. 31–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-48332-6_3
Levy, Y., Ellis, T.J.: A systems approach to conduct an effective literature review in support of information systems research. Informing Sci. J. 9 (2006)
Lytos, A., Lagkas, T., Sarigiannidis, P., Argyriou, V., Eleftherakis, G.: Modelling argumentation in short text: a case of social media debate. Simul. Model. Pract. Theory 115, 102446 (2022)
Maedche, A., Gregor, S., Morana, S., Feine, J.: Conceptualization of the problem space in design science research. In: Tulu, B., Djamasbi, S., Leroy, G. (eds.) DESRIST 2019. LNCS, vol. 11491, pp. 18–31. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19504-5_2
Mendonça, P.C.C., Justi, R.: The relationships between modelling and argumentation from the perspective of the model of modelling diagram. Int. J. Sci. Educ. 35(14), 2407–2434 (2013)
Montecchiari, D., Hinkelmann, K.: Towards ontology-based validation of EA principles. In: Barn, B.S., Sandkuhl, K. (eds.) The Practice of Enterprise Modeling. LNBI, vol. 456, pp. 66–81. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21488-2_5
Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions. Data Knowl. Eng. 55(3), 243–276 (2005)
Mylopoulos, J.: Conceptual modelling and telos. Conceptual modelling, databases, and CASE: an integrated view of information system development, pp. 49–68 (1992)
Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007)
OMG: Meta object facility (MOF) core specification, version 2.4.2. Technical report, Object Management Group (2015). https://www.omg.org/spec/BMM/1.3/PDF
Österle, H., et al.: Memorandum on design-oriented information systems research. Eur. J. Inf. Syst. 20(1), 7–10 (2011). https://doi.org/10.1057/ejis.2010.55
Rittel, H., Noble, D.: Issue-Based Information Systems for Design. Institute of Urban and Regional Development. University of California, Berkeley (1989)
Streeb, D., El-Assady, M., Keim, D.A., Chen, M.: Why visualize? arguments for visual support in decision making. IEEE Comput. Graph. Appl. 41, 17–22 (2021). https://doi.org/10.1109/MCG.2021.3055971
Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge (2003)
Tracy, S.J.: Taking the plunge: a contextual approach to problem-based research. Commun. Monogr. 74(1), 106–111 (2007)
Vaishnavi, V.K.: Design Science Research Methods and Patterns: Innovating Information and Communication Technology. Auerbach Publications (2007)
Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Martins, B., Pastor, O.: Comparing traditional conceptual modeling with ontology-driven conceptual modeling: an empirical study. Inf. Syst. 81, 92–103 (2019)
Veres, C., Sampson, J., Cox, K., Bleistein, S., Verner, J.: An ontology-based approach for supporting business-it alignment. Complex Intell. Syst. Appl. 21–42 (2010)
Wand, Y., Weber, R.: An ontological analysis of the relationship construct in conceptual modeling. ACM Trans. Database Syst. 24, 494–528 (1999)
Wand, Y., Weber, R.: Research commentary: information systems and conceptual modeling-a research agenda. Inf. Syst. Res. 13(4), 363–376 (2002)
Zhou, H., Song, N., Chang, W., Wang, X.: Linking the thoughts within scientific papers: Construction and visualization of argumentation graph. In: Proceedings of the Association for Information Science and Technology, vol. 56, no. 1, pp. 757–759 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hinkelmann, K., Afonina, V., Montecchiari, D. (2024). Enhancing Research Clarity: Ontology-Based Modeling of Argumentation in RPML. In: Almeida, J.P.A., Di Ciccio, C., Kalloniatis, C. (eds) Advanced Information Systems Engineering Workshops. CAiSE 2024. Lecture Notes in Business Information Processing, vol 521. Springer, Cham. https://doi.org/10.1007/978-3-031-61003-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-61003-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61002-8
Online ISBN: 978-3-031-61003-5
eBook Packages: Computer ScienceComputer Science (R0)