Enhancing Research Clarity: Ontology-Based Modeling of Argumentation in RPML | SpringerLink
Skip to main content

Enhancing Research Clarity: Ontology-Based Modeling of Argumentation in RPML

  • Conference paper
  • First Online:
Advanced Information Systems Engineering Workshops (CAiSE 2024)

Abstract

Navigating the research process, from problem identification to argumentation construction, challenges novice researchers. This study introduces RPML (Research Problem Modeling Language), a metamodel and ontology designed to address these challenges by visually representing key aspects of research argumentation. RPML enhances clarity and coherence in research discourse by providing researchers with a visual representation of argumentation for a research problem. RPML is represented as a specialization of the OMG Business Motivation Model and Toulmin’s argumentation model approach. This enables researchers to gain a comprehensive overview of their research projects, identify research problems, build robust argumentation, and select suitable research strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://scite.ai/.

References

  1. Afonina, V., Hinkelmann, K., Montecchiari, D.: Enriching enterprise architecture models with healthcare domain knowledge. In: Ruiz, M., Soffer, P. (eds.) CAiSE 2023. LNCS, vol. 482, pp. 17–28. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34985-0_2

    Chapter  Google Scholar 

  2. Andrews, R.: Models of argumentation in educational discourse. Text-Interdisc. J. Study Discourse 25, 107–127 (2005). https://doi.org/10.1515/text.2005.25.1.107

    Article  Google Scholar 

  3. Conklin, J., Begeman, M.L.: gIBIS: a hypertext tool for exploratory policy discussion. ACM Trans. Inf. Syst. (TOIS) 6(4), 303–331 (1988)

    Article  Google Scholar 

  4. Conklin, J., Begeman, M.L.: gIBIS: a tool for all reasons. J. Am. Soc. Inf. Sci. 40(3), 200–213 (1989)

    Article  Google Scholar 

  5. De Moor, A., Weigand, H.: Effective communication in virtual adversarial collaborative communities. J. Commun. Inform. 2(2) (2006)

    Google Scholar 

  6. Ellis, T.J., Levy, Y.: Framework of problem-based research: a guide for novice researchers on the development of a research-worthy problem. Informing Sci. Int. J. Emerg. Transdiscipl. 11, 017–033 (2008). https://doi.org/10.28945/438

  7. Guizzardi, G.: Conceptualizations, modeling languages, and (meta) models. In: Databases and Information Systems IV: Selected Papers from the Seventh International Baltic Conference, DB &IS’2006 (2007)

    Google Scholar 

  8. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19(2), 4 (2007)

    Google Scholar 

  9. Hinkelmann, K., Afonina, V., Montecchiari, D.: Visualizing argumentation for research problem and research design. In: 19th International Conference on Design Science Research in Information Systems and Technology (DESRIST 2024). Trollhättan (2024)

    Google Scholar 

  10. Horváth, I.: Structuring the process of design research-a necessary step towards ensuring scientific rigor. In: DS 75-2: Proceedings of the 19th International Conference on Engineering Design (ICED13), Design for Harmonies, vol. 2: Design Theory and Research Methodology, Seoul, Korea, 19-22.08. 2013 (2013)

    Google Scholar 

  11. Karagiannis, D., Kühn, H., et al.: Metamodelling platforms. In: EC-web, p. 182. Citeseer (2002)

    Google Scholar 

  12. Karagiannis, D., Lee, M., Hinkelmann, K., Utz, W. (eds.): Domain-Specific Conceptual Modeling: Concepts, Methods and ADOxx Tools. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93547-4

  13. Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.): Domain- Specific Conceptual Modeling. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39417-6

  14. Keet, C.M.: An Introduction to Ontology Engineering. University of Cape Town, Cape Town (2018)

    Google Scholar 

  15. Khambete, P.: Adaptation of Toulmin’s model of argumentation for establishing Rigour and relevance in design research. In: Chakrabarti, A. (ed.) Research into Design for a Connected World. SIST, vol. 134, pp. 3–13. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5974-3_1

    Chapter  Google Scholar 

  16. Kunz, W., Rittel, H.: Issues as elements of information systems. Institute of Urban and Regional Development, University of California, Berkeley, California, Technical report (1970)

    Google Scholar 

  17. Laurenzi, E., Hinkelmann, K., Montecchiari, D., Goel, M.: Agile visualization in design thinking. In: Dornberger, R. (ed.) New Trends in Business Information Systems and Technology. SSDC, vol. 294, pp. 31–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-48332-6_3

    Chapter  Google Scholar 

  18. Levy, Y., Ellis, T.J.: A systems approach to conduct an effective literature review in support of information systems research. Informing Sci. J. 9 (2006)

    Google Scholar 

  19. Lytos, A., Lagkas, T., Sarigiannidis, P., Argyriou, V., Eleftherakis, G.: Modelling argumentation in short text: a case of social media debate. Simul. Model. Pract. Theory 115, 102446 (2022)

    Article  Google Scholar 

  20. Maedche, A., Gregor, S., Morana, S., Feine, J.: Conceptualization of the problem space in design science research. In: Tulu, B., Djamasbi, S., Leroy, G. (eds.) DESRIST 2019. LNCS, vol. 11491, pp. 18–31. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19504-5_2

    Chapter  Google Scholar 

  21. Mendonça, P.C.C., Justi, R.: The relationships between modelling and argumentation from the perspective of the model of modelling diagram. Int. J. Sci. Educ. 35(14), 2407–2434 (2013)

    Article  Google Scholar 

  22. Montecchiari, D., Hinkelmann, K.: Towards ontology-based validation of EA principles. In: Barn, B.S., Sandkuhl, K. (eds.) The Practice of Enterprise Modeling. LNBI, vol. 456, pp. 66–81. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21488-2_5

    Chapter  Google Scholar 

  23. Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions. Data Knowl. Eng. 55(3), 243–276 (2005)

    Article  Google Scholar 

  24. Mylopoulos, J.: Conceptual modelling and telos. Conceptual modelling, databases, and CASE: an integrated view of information system development, pp. 49–68 (1992)

    Google Scholar 

  25. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007)

    Google Scholar 

  26. OMG: Meta object facility (MOF) core specification, version 2.4.2. Technical report, Object Management Group (2015). https://www.omg.org/spec/BMM/1.3/PDF

  27. Österle, H., et al.: Memorandum on design-oriented information systems research. Eur. J. Inf. Syst. 20(1), 7–10 (2011). https://doi.org/10.1057/ejis.2010.55

    Article  Google Scholar 

  28. Rittel, H., Noble, D.: Issue-Based Information Systems for Design. Institute of Urban and Regional Development. University of California, Berkeley (1989)

    Google Scholar 

  29. Streeb, D., El-Assady, M., Keim, D.A., Chen, M.: Why visualize? arguments for visual support in decision making. IEEE Comput. Graph. Appl. 41, 17–22 (2021). https://doi.org/10.1109/MCG.2021.3055971

    Article  Google Scholar 

  30. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  31. Tracy, S.J.: Taking the plunge: a contextual approach to problem-based research. Commun. Monogr. 74(1), 106–111 (2007)

    Article  Google Scholar 

  32. Vaishnavi, V.K.: Design Science Research Methods and Patterns: Innovating Information and Communication Technology. Auerbach Publications (2007)

    Google Scholar 

  33. Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Martins, B., Pastor, O.: Comparing traditional conceptual modeling with ontology-driven conceptual modeling: an empirical study. Inf. Syst. 81, 92–103 (2019)

    Article  Google Scholar 

  34. Veres, C., Sampson, J., Cox, K., Bleistein, S., Verner, J.: An ontology-based approach for supporting business-it alignment. Complex Intell. Syst. Appl. 21–42 (2010)

    Google Scholar 

  35. Wand, Y., Weber, R.: An ontological analysis of the relationship construct in conceptual modeling. ACM Trans. Database Syst. 24, 494–528 (1999)

    Article  Google Scholar 

  36. Wand, Y., Weber, R.: Research commentary: information systems and conceptual modeling-a research agenda. Inf. Syst. Res. 13(4), 363–376 (2002)

    Article  Google Scholar 

  37. Zhou, H., Song, N., Chang, W., Wang, X.: Linking the thoughts within scientific papers: Construction and visualization of argumentation graph. In: Proceedings of the Association for Information Science and Technology, vol. 56, no. 1, pp. 757–759 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Hinkelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hinkelmann, K., Afonina, V., Montecchiari, D. (2024). Enhancing Research Clarity: Ontology-Based Modeling of Argumentation in RPML. In: Almeida, J.P.A., Di Ciccio, C., Kalloniatis, C. (eds) Advanced Information Systems Engineering Workshops. CAiSE 2024. Lecture Notes in Business Information Processing, vol 521. Springer, Cham. https://doi.org/10.1007/978-3-031-61003-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61003-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61002-8

  • Online ISBN: 978-3-031-61003-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics