Strategies for Compressing the Pareto Frontier: Application to Strategic Planning of Hydropower in the Amazon Basin | SpringerLink
Skip to main content

Strategies for Compressing the Pareto Frontier: Application to Strategic Planning of Hydropower in the Amazon Basin

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2024)

Abstract

The development of ethical AI decision-making systems requires considering multiple criteria, often resulting in a large spectrum of partially ordered solutions. At the core of this challenge lies the Pareto frontier, the set of all feasible solutions where no solution is dominated by another. In previous work, we developed both exact and approximate algorithms for generating the Pareto frontier for tree-structured networks. However, as the number of criteria grows, the Pareto frontier increases exponentially, posing a significant challenge for decision-makers. To address this challenge, we propose various strategies to efficiently compress the Pareto frontier, including an approximation method with optimality and polynomial runtime guarantees. We provide detailed empirical results on the strategies’ effectiveness in the context of strategic planning of the hydropower expansion in the Amazon basin. Our strategies offer a more manageable approach for navigating Pareto frontiers.

This project is partially supported by the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship, a Schmidt Futures program; the National Science Foundation (NSF); the National Institute of Food and Agriculture (USDA/NIFA); the Air Force Office of Scientific Research (AFOSR); and the Cornell Atkinson Center for a Sustainable Future (ACSF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida, R.M., et al.: Reducing greenhouse gas emissions of amazon hydropower with strategic dam planning. Nat. Commun. 10(1), 1–9 (2019)

    Article  MathSciNet  Google Scholar 

  2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11

    Chapter  Google Scholar 

  3. Bai, Y., Shi, Q., Grimson, M., Flecker, A., Gomes, C.P.: Efficiently approximating high-dimensional pareto frontiers for tree-structured networks using expansion and compression. In: Cire, A.A. (eds.) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023. LNCS, vol. 13884, pp. 1–17. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33271-5_1

  4. Bergman, D., Cire, A.A.: Multiobjective optimization by decision diagrams. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 86–95. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_6

  5. Cao, Y., Smucker, B.J., Robinson, T.J.: On using the hypervolume indicator to compare pareto fronts: applications to multi-criteria optimal experimental design. J. Stat. Plan. Inference 160, 60–74 (2015). https://doi.org/10.1016/j.jspi.2014.12.004, https://www.sciencedirect.com/science/article/pii/S0378375814002006

  6. Chen, W., Ishibuchi, H., Shang, K.: Clustering-based subset selection in evolutionary multiobjective optimization. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 468–475. IEEE (2021)

    Google Scholar 

  7. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

    Article  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Doerr, B., Qu, Z.: A first runtime analysis of the nsga-ii on a multimodal problem. IEEE Transactions on Evolutionary Computation (2023)

    Google Scholar 

  10. Doerr, B., Qu, Z.: From understanding the population dynamics of the nsga-ii to the first proven lower bounds. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 12408–12416 (2023)

    Google Scholar 

  11. Doerr, B., Qu, Z.: Runtime analysis for the nsga-ii: Provable speed-ups from crossover. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 12399–12407 (2023)

    Google Scholar 

  12. Flecker, A.S., et al.: Reducing adverse impacts of amazon hydropower expansion. Science 375(6582), 753–760 (2022)

    Article  Google Scholar 

  13. Gomes, C., et al.: Computational sustainability: computing for a better world and a sustainable future. Commun. ACM 62(9), 56–65 (2019)

    Article  Google Scholar 

  14. Gomes-Selman, J.M., Shi, Q., Xue, Y., García-Villacorta, R., Flecker, A.S., Gomes, C.P.: Boosting efficiency for computing the pareto frontier on tree structured networks. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 263–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_19

    Chapter  Google Scholar 

  15. Grimson, M., et al.: Scaling up pareto optimization for tree structures with affine transformations: Evaluating hybrid floating solar-hydropower systems in the amazon. In: Proceedings of the AAAI Conference on Artificial Intelligence (submitted)

    Google Scholar 

  16. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967). https://doi.org/10.1007/bf02289588, http://dx.doi.org/10.1007/BF02289588

  17. Murtagh, F., Legendre, P.: Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J. Classif. 31(3), 274–295 (2014). https://doi.org/10.1007/s00357-014-9161-z, http://dx.doi.org/10.1007/s00357-014-9161-z

  18. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3) (2006). https://doi.org/10.1103/physreve.74.036104, http://dx.doi.org/10.1103/PhysRevE.74.036104

  19. Sahraei, S., Asadzadeh, M.: Cluster-based multi-objective optimization for identifying diverse design options: application to water resources problems. Environ. Model. Softw. 135, 104902 (2021)

    Article  Google Scholar 

  20. Sibson, R.: Slink: an optimally efficient algorithm for the single-link cluster method. Comput. J. 16(1), 30–34 (1973). https://doi.org/10.1093/comjnl/16.1.30, http://dx.doi.org/10.1093/comjnl/16.1.30

  21. Sokal, R.R.: Numerical taxonomy. Sci. Am. 215(6), 106–117 (1966). http://www.jstor.org/stable/24931358

  22. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  23. United Nations General Assembly: Transforming our world: the 2030 agenda for sustainable development (2015). https://sdgs.un.org/2030agenda

  24. Vamplew, P., Dazeley, R., Foale, C., Firmin, S., Mummery, J.: Human-aligned artificial intelligence is a multiobjective problem. Ethics Inf. Technol. 20, 27–40 (2018)

    Article  Google Scholar 

  25. Wei, D., Jiang, Q., Wei, Y., Wang, S.: A novel hierarchical clustering algorithm for gene sequences. BMC Bioinform. 13(1) (2012). https://doi.org/10.1186/1471-2105-13-174, http://dx.doi.org/10.1186/1471-2105-13-174

  26. Wu, X., et al.: Efficiently approximating the pareto frontier: hydropower dam placement in the amazon basin. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  27. Zhang, H., Song, S., Zhou, A., Gao, X.Z.: A clustering based multiobjective evolutionary algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 723–730. IEEE (2014)

    Google Scholar 

  28. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  29. Zheng, W., Liu, Y., Doerr, B.: A first mathematical runtime analysis of the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). In: Conference on Artificial Intelligence, AAAI 2022. AAAI Press (2022). preprint at https://arxiv.org/abs/2112.08581

  30. Zhou, S., et al.: A multi-objective evolutionary algorithm with hierarchical clustering-based selection. IEEE Access 11, 2557–2569 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongdi Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, Z. et al. (2024). Strategies for Compressing the Pareto Frontier: Application to Strategic Planning of Hydropower in the Amazon Basin. In: Dilkina, B. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2024. Lecture Notes in Computer Science, vol 14743. Springer, Cham. https://doi.org/10.1007/978-3-031-60599-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60599-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60601-4

  • Online ISBN: 978-3-031-60599-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics