Explainable Algorithm Selection for the Capacitated Lot Sizing Problem | SpringerLink
Skip to main content

Explainable Algorithm Selection for the Capacitated Lot Sizing Problem

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2024)

Abstract

Algorithm selection is a class of meta-algorithms that has emerged as a crucial approach for solving complex combinatorial optimization problems. Successful algorithm selection involves navigating a diverse landscape of solvers, each designed with distinct heuristics and search strategies. It is a classification problem in which statistical features of a problem instance are used to select the algorithm that should tackle it most efficiently. However, minimal attention has been given to investigating algorithm selection decisions. This work presents a framework for iterative feature selection and explainable multi-class classification in Algorithm Selection for the Capacitated Lot Sizing Problem (CLSP). The CLSP is a combinatorial optimization problem widely studied with important industrial applications. The framework reduces the features considered by the machine learning approach and uses SHAP analysis to investigate their contribution to the selection. The analysis shows which instance type characteristics positively affect the relative performance of a heuristic. The approach can be used to improve the algorithm selection’s transparency and inform the developer of an algorithm’s weak and strong points. The experimental analysis shows that the framework selector provides valuable insights with a narrow optimality gap close to a parallel deployment of the heuristic set that generalises well to instances considerably bigger than the training ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bischl, B., et al.: ASlib: a benchmark library for algorithm selection. Artif. Intell. 237, 41–58 (2016)

    Article  MathSciNet  Google Scholar 

  2. Chen, W.H., Thizy, J.M.: Analysis of relaxations for the multi-item capacitated lot-sizing problem. Ann. Oper. Res. 26, 29–72 (1990). https://doi.org/10.1007/BF02248584

    Article  MathSciNet  Google Scholar 

  3. Copil, K., Wörbelauer, M., Meyr, H., Tempelmeier, H.: Simultaneous lotsizing and scheduling problems: a classification and review of models. OR Spect. 39(1), 1–64 (2017). https://doi.org/10.1007/s00291-015-0429-4

    Article  MathSciNet  Google Scholar 

  4. Dalla, M., Visentin, A., O’Sullivan, B.: Automated SAT problem feature extraction using convolutional autoencoders. In: IEEE International Conference on Tools with Artificial Intelligence (ICTAI) (2021)

    Google Scholar 

  5. Dixon, P.S., Silver, E.A.: A heuristic solution procedure for the multi-item, single-level, limited capacity, lot-sizing problem. J. Oper. Manag. 2(1), 23–39 (1981). https://doi.org/10.1016/0272-6963(81)90033-4

    Article  Google Scholar 

  6. Dogramaci, A., Panayiotopoulos, J.C., Adam, N.R.: The dynamic lot-sizing problem for multiple items under limited capacity. AIIE Trans. 13(4), 294–303 (1981). https://doi.org/10.1080/05695558108974565

    Article  Google Scholar 

  7. Gebruers, C., Hnich, B., Bridge, D., Freuder, E.: Using cbr to select solution strategies in constraint programming. In: Munoz-Avila, H., Ricci, F. (eds.) ICCBR 2005. LNCS, vol. 3620, pp. 222–236. Springer, Heidelberg (2005). https://doi.org/10.1007/11536406_19

    Chapter  Google Scholar 

  8. Günther, H.O.: Planning lot sizes and capacity requirements in a single stage production system. Eur. J. Oper. Res. 31(2), 223–231 (1987). https://doi.org/10.1016/0377-2217(87)90026-9

    Article  Google Scholar 

  9. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: a hierarchical portfolio of solvers and transformations. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 301–317. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-07046-9_22

    Chapter  Google Scholar 

  10. Kärcher, J., Meyr, H.: A machine learning approach for identifying the best solution heuristic for a large scaled capacitated lotsizing problem. In: Preprint - Research Square (2023). https://doi.org/10.21203/rs.3.rs-3709286/v1

  11. Karimi, B., Fatemi Ghomi, S., Wilson, J.: The capacitated lot sizing problem: a review of models and algorithms. Omega 31(5), 365–378 (2003). https://doi.org/10.1016/S0305-0483(03)00059-8

    Article  Google Scholar 

  12. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

    Article  Google Scholar 

  13. Kostovska, A., Doerr, C., Džeroski, S., Kocev, D., Panov, P., Eftimov, T.: Explainable model-specific algorithm selection for multi-label classification. In: 2022 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 39–46. IEEE (2022)

    Google Scholar 

  14. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. In: Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary Approach, pp. 149–190 (2016)

    Google Scholar 

  15. Lambrecht, M.R., Vanderveken, H.: Heuristic procedures for the single operation, multi-item loading problem. AIIE Trans. 11(4), 319–326 (1979). https://doi.org/10.1080/05695557908974478

    Article  Google Scholar 

  16. Lindauer, M., van Rijn, J.N., Kotthoff, L.: The algorithm selection competitions 2015 and 2017. Artif. Intell. 272, 86–100 (2019)

    Article  MathSciNet  Google Scholar 

  17. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 1–10 (2017)

    Google Scholar 

  18. Müller, D., Müller, M.G., Kress, D., Pesch, E.: An algorithm selection approach for the flexible job shop scheduling problem: choosing constraint programming solvers through machine learning. Eur. J. Oper. Res. 302(3), 874–891 (2022)

    Article  MathSciNet  Google Scholar 

  19. Pulatov, D., Anastacio, M., Kotthoff, L., Hoos, H.: Opening the black box: automated software analysis for algorithm selection. In: International Conference on Automated Machine Learning, pp. 6–1. PMLR (2022)

    Google Scholar 

  20. Ramya, R., Rajendran, C., Ziegler, H., Mohapatra, S., Ganesh, K., et al.: Capacitated Lot Sizing Problems in Process Industries. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-01222-9

    Book  Google Scholar 

  21. Sadreddin, A., Mouhoub, M., Sadaoui, S.: Portfolio selection for sat instances. In: 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2962–2967. IEEE (2022)

    Google Scholar 

  22. Shao, X., Wang, H., Zhu, X., Xiong, F., Mu, T., Zhang, Y.: EFFECT: explainable framework for meta-learning in automatic classification algorithm selection. Inf. Sci. 622, 211–234 (2023)

    Article  Google Scholar 

  23. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  24. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for sat. J. Artif. Intell. Res. 32, 565–606 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This publication has emanated from research supported by Science Foundation Ireland under Grant No. 12/RC/2289-P2 at Insight, the SFI Research Centre for Data Analytics, which is co-funded under the European Regional Development Fund, and by the EU Horizon project TAILOR (952215). The authors gratefully acknowledge useful inputs from Lars Kotthoff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Visentin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Visentin, A., Gallchóir, A.Ó., Kärcher, J., Meyr, H. (2024). Explainable Algorithm Selection for the Capacitated Lot Sizing Problem. In: Dilkina, B. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2024. Lecture Notes in Computer Science, vol 14743. Springer, Cham. https://doi.org/10.1007/978-3-031-60599-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60599-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60601-4

  • Online ISBN: 978-3-031-60599-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics