Towards Application of the Tabular Data Transformation to Images in the Intrusion Detection Tasks Using Deep Learning Techniques | SpringerLink
Skip to main content

Towards Application of the Tabular Data Transformation to Images in the Intrusion Detection Tasks Using Deep Learning Techniques

  • Conference paper
  • First Online:
Intelligent Distributed Computing XVI (IDC 2023)

Abstract

Recently, different deep learning based techniques have been proposed to detect intrusions and anomalies in the information systems. Convolutional neural networks are often used to reveal hidden spatial relations between features, however their application requires certain data preprocessing techniques that transform tabular non-spatial data to matrices. This paper studies different approaches to tabular data transformation to images and analyzes their impact on the efficiency of attack detection including the ability to detect novel and unseen attacks. Experiments are conducted using the CICIDS2017 dataset, which describes network traffic flows as numerical vectors and contains different types of attacks. The conducted research allowed us to conclude on areas of applicability of tabular data transformation to images considering advantages and limitations of such preprocessing.

The research is supported by the grant of Russian Science Foundation #23-11-20024, https://rscf.ru/en/project/23-11-20024/, and St. Petersburg Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 20591
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 31459
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abazari, F., Branca, E., Novikova, E., Stakhanova, N.: Language and platform independent attribution of heterogeneous code. In: Li, F., Liang, K., Lin, Z., Katsikas, S.K. (eds.) SecureComm 2022. LNICST, vol. 462, pp. 173–191. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25538-0_10

    Chapter  Google Scholar 

  2. Alrabaee, S., Karbab, E.M.B., Wang, L., Debbabi, M.: BinEye: towards efficient binary authorship characterization using deep learning. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 47–67. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_3

    Chapter  Google Scholar 

  3. Andresini, G., Appice, A., De Rose, L., Malerba, D.: Gan augmentation to deal with imbalance in imaging-based intrusion detection. Futur. Gener. Comput. Syst. 123, 108–127 (2021). https://doi.org/10.1016/j.future.2021.04.017

    Article  Google Scholar 

  4. Andresini, G., Appice, A., Mauro, N.D., Loglisci, C., Malerba, D.: Multi-channel deep feature learning for intrusion detection. IEEE Access 8, 53346–53359 (2020). https://doi.org/10.1109/ACCESS.2020.2980937

    Article  Google Scholar 

  5. Bazgir, O., Zhang, R., Dhruba, S.R., Rahman, R., Ghosh, S., Pal, R.: Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-18197-y

    Article  Google Scholar 

  6. Chollet, F.: A transfer learning with deep neural network approach for network intrusion detection. Int. J. Intell. Comput. Res. (IJICR) 12, 087–1095 (2021)

    Google Scholar 

  7. Hnamte, V., Hussain, J.: Dcnnbilstm: an efficient hybrid deep learning-based intrusion detection system. Telematics Inform. Rep. 10, 100053 (2023). https://doi.org/10.1016/j.teler.2023.100053

    Article  Google Scholar 

  8. Khan, R.U., Zhang, X., Alazab, M., Kumar, R.: An improved convolutional neural network model for intrusion detection in networks. In: 2019 Cybersecurity and Cyberforensics Conference (CCC), pp. 74–77 (2019). https://doi.org/10.1109/CCC.2019.000-6

  9. Kim, J., Kim, J., Kim, H., Shim, M., Choi, E.: CNN-based network intrusion detection against denial-of-service attacks. Electronics 9(6) (2020). https://doi.org/10.3390/electronics9060916

  10. Kim, T., Pak, W.: Deep learning-based network intrusion detection using multiple image transformers. Appl. Sci. 13(5) (2023). https://doi.org/10.3390/app13052754. https://www.mdpi.com/2076-3417/13/5/2754

  11. Kim, T., Suh, S.C., Kim, H., Kim, J., Kim, J.: An encoding technique for CNN-based network anomaly detection. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 2960–2965 (2018). https://doi.org/10.1109/BigData.2018.8622568

  12. Leevy, J.L., Khoshgoftaar, T.M.: A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 big data. J. Big Data 7 (2020). https://doi.org/10.1186/s40537-020-00382-x

  13. Li, Z., Qin, Z., Huang, K., Yang, X., Ye, S.: Intrusion detection using convolutional neural networks for representation learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) ICONIP 2017. LNCS, vol. 10638, pp. 858–866. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70139-4_87

    Chapter  Google Scholar 

  14. Masum, M., Shahriar, H.: TL-NID: deep neural network with transfer learning for network intrusion detection. In: 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 1–7 (2020). https://doi.org/10.23919/ICITST51030.2020.9351317

  15. Mohammadpour, L., Ling, T.C., Liew, C.S., Aryanfar, A.: A survey of CNN-based network intrusion detection. Appl. Sci. 12(16) (2022). https://doi.org/10.3390/app12168162

  16. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), pp. 1–6 (2015). https://doi.org/10.1109/MilCIS.2015.7348942

  17. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: visualization and automatic classification. In: Proceedings of the 8th International Symposium on Visualization for Cyber Security, VizSec 2011. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2016904.2016908

  18. Noever, D.A., Noever, S.E.M.: Image classifiers for network intrusions. CoRR abs/2103.07765 (2021). https://arxiv.org/abs/2103.07765

  19. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: International Conference on Information Systems Security and Privacy, pp. 108–116 (2018). https://doi.org/10.5220/0006639801080116

  20. Sharma, A., Vans, E., Shigemizu, D., Boroevich, K.A., Tsunoda, T.: DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-47765-6

    Article  Google Scholar 

  21. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6 (2009). https://doi.org/10.1109/CISDA.2009.5356528

  22. Wu, P., Guo, H., Buckland, R.: A transfer learning approach for network intrusion detection. In: 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), pp. 281–285 (2019). https://doi.org/10.1109/ICBDA.2019.8713213

  23. Yang, H., Wang, F.: Wireless network intrusion detection based on improved convolutional neural network. IEEE Access 7, 64366–64374 (2019). https://doi.org/10.1109/ACCESS.2019.2917299

    Article  Google Scholar 

  24. Zhu, Y., et al.: Converting tabular data into images for deep learning with convolutional neural networks. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-90923-y

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenia Novikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Novikova, E., Bukhtiarov, M., Kotenko, I., Fedorchenko, E., Saenko, I. (2024). Towards Application of the Tabular Data Transformation to Images in the Intrusion Detection Tasks Using Deep Learning Techniques. In: Köhler-Bußmeier, M., Renz, W., Sudeikat, J. (eds) Intelligent Distributed Computing XVI. IDC 2023. Studies in Computational Intelligence, vol 1138. Springer, Cham. https://doi.org/10.1007/978-3-031-60023-4_12

Download citation

Publish with us

Policies and ethics