Abstract
This paper outlines the main research activities carried out by the Portuguese Air Force Academy Research Centre (CIAFA) in the domain of Unmanned Aircraft Systems (UAS) for Intelligence, Surveillance and Reconnaissance (ISR) missions in maritime environment. Firstly, a general description of CIAFA is presented. Then, an end-to-end overview of CIAFA contributions regarding UAS airframes, hardware, software and control systems architectures for ISR maritime missions is presented. The wide range of contributions in the field of UAS demonstrates how CIAFA plays an important role in the context of military robotics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Academy, P.A.F.: Voamais - computer vision for the operation of unmanned aerinal vehicles in maritime and wildfire scenarios (2023). https://www.academiafa.edu.pt/p-1229-voamais
Alves, B., et al.: Design of a hydrogen powered small electric fixed-wing UAV with VTOL capability. In: Marta, A.C., Suleman, A. (eds.) International Conference on Multidisciplinary Design Optimization of Aerospace Systems, pp. 290–304. ECCOMAS, Aerobest 2021, Lisbon, Portugal (2021). ISBN: 978-989-99424-8-6
Alves, B., Marta, A., Félix, L.: Multidisciplinary optimisation of an eVTOL UAV with a hydrogen fuel cell. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 134–143 (2022). https://doi.org/10.1109/ICUAS54217.2022.9836228
Briñón-Arranz, L., Seuret, A., Pascoal, A.: Target tracking via a circular formation of unicycles. IFAC-PapersOnLine 50(1), 5782–5787 (2017). https://doi.org/10.1016/j.ifacol.2017.08.422
Coelho, V., et al.: Design of a tactical eVTOL UAV with a hydrogen fuel cell. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 94–103 (2022)https://doi.org/10.1109/ICUAS54217.2022.9836046
Commission, E.: Smart unattended airborne sensor network for detection of vessels used for cross border crime and irregular entry (2017). https://cordis.europa.eu/project/id/313243
Cruz, G.: Gazebo world car dataset (2023). https://github.com/charterscruz/car_detection
Cruz, G., Bernardino, A.: Learning temporal features for detection on maritime airborne video sequences using convolutional LSTM. IEEE Trans. Geosci. Remote Sens. 57(9), 6565–6576 (2019)
Encarnac̨ão, P., Pascoal, A.: 3D path following for autonomous underwater vehicles. In: Proceedings of the 39th Conference on Decision and Control, pp. 2977 – 2982 (2000)
Félix, M., Oliveira, T., Cruz, G., Silva, D., Alves, J., Santos, L.: Vision-based cooperative moving path following for fixed-wing UAVs. In: 2023 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 782–789. IEEE (2023)
Franco, V., Correia, J., Caetano, J., Félix, L.: Design of a class i unmanned aircraft for maritime surveillance. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1126–1135 (2019). https://doi.org/10.1109/ICUAS.2019.8798217
Félix: Software in the loop simulations repository. From Github (2022). https://github.com/mg-felix/sitl-simulations
Gromek, D., et al.: C-band SAR radar trials using UAV platform: Experimental results of SAR system integration on a UAV carrier. In: 2016 17th International Radar Symposium (IRS) (2016)
Jain, R.P.K.: Decentralized Cooperative Control Methods for Multiple Mobile Robotic Vehicles. Universidade do Porto (2019)
Lapierre, L., Soetanto, D., Pascoal, A.: Adaptive, non-singular path-following control of dynamic wheeled robots. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 2, pp. 1765–1770 (2003)
Manual, I.: International Aeronautical and Maritime Search and Rescue Manual. IMO Publishing, London, International Maritime Organization (2016)
Marques, L., et al.: Neutron and gamma-ray detection system coupled to a multirotor for screening of shipping container cargo. Sensors 23(1), 329 (2022)
Marques, M.M., et al.: Unmanned aircraft systems in maritime operations: challenges addressed in the scope of the seagull project. In: OCEANS 2015-Genova, pp. 1–6. IEEE (2015)
Marques, M.M., et al.: An unmanned aircraft system for maritime operations: the automatic detection subsystem. Mar. Technol. Soc. J. 55(1), 38–49 (2021)
Marques, M.M., et al.: Oil spills detection: challenges addressed in the scope of the seagull project. In: OCEANS 2016 MTS/IEEE Monterey, pp. 1–6. IEEE (2016)
Marques, R.: Capacidade ISR na forc̨a aérea portuguesa: Competências atuais e perspetivas futuras de aplicac̨ão de uas. Revista Científica da Academia da Forc̨a Aérea (2016)
Mendes, P., Félix, L., Oliveira, T., Franco, V.: Preliminary design of the propuslion system of a fixed wing tilt rotor quadcopter class i mini unmanned aircraft. In: Marta, A.C., Suleman, A. (eds.) International Conference on Multidisciplinary Design Optimization of Aerospace Systems, pp. 272–289. ECCOMAS, Aerobest 2021, Lisbon, Portugal (2021). ISBN: 978-989-99424-8-6
Morgado, J., Ruivo, N.: Proposta de projeto, submetida à direção geral de recursos da defesa nacional do ministério da defesa nacional, pela força aérea portuguesa: Desenvolvimento de tecnologia uav para utilização de âmbito conjunto e dual (troante). Academia da Força Aérea, Sintra (2014)
Morgado, J., Santos, A., Caetano, J.: Portuguese air force research, development and innovation centre (CIDIFA): Rd &i in the area of autonomous unmanned aerial systems. Instituto da Defesa Nacional (2017)
Oliveira, T., Aguiar, A.P., Encarnacao, P.: Moving path following for unmanned aerial vehicles with applications to single and multiple target tracking problems. IEEE Trans. Rob. 32(5), 1062–1078 (2016). https://doi.org/10.1109/tro.2016.2593044.4
Oliveira, T., Aguiar, A.P., Encarnacao, P.: Three dimensional moving path following for fixed-wing unmanned aerial vehicles. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2017). https://doi.org/10.1109/icra.2017.7989315
Oliveira, T., Encarnacao, P., Aguiar, A.: Moving path following for autonomous robotic vehicles. In: 2013 European Control Conference, ECC 2013, pp. 3320–3325 (2013)
Pinto, J., et al.: Network enabled cooperation of autonomous vehicles: a communications perspective. In: OCEANS 2017 - Aberdeen. IEEE (2017)
Pires, C., Damas, B., Bernardino, A.: An efficient cascaded model for ship segmentation in aerial images. IEEE Access 10, 31942–31954 (2022)
Real-Arce, D.A., et al.: A new integrated border security approach: the fp7 perseus project. Mar. Technol. Soc. J. 50(4), 14–25 (2016)
Ribeiro, R., et al.: Towards the automation of wildfire monitoring with aerial vehicles: the firefront project. In: Rousseau, J.J., Kapralos, B. (eds.) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges, pp. 183–193. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37742-6_15
Ribeiro, R., Cruz, G., Matos, J., Bernardino, A.: A data set for airborne maritime surveillance environments. IEEE Trans. Circuits Syst. Video Technol. 29(9), 2720–2732 (2017)
Saloio, J.: Study of photovoltaic cells for UAV applications. Master’s thesis, Academia da Forc̨a Aérea (2023)
Santos, L., Oliveira, T., Cruz, G.: Formation flight control for search missions in a maritime Environment using UAVs. In: Proceedings of the Conference International Society of Military Sciences 2022. International Society of Military Sciences, ISMS, Military University Institute of Portugal (2022)
Shi, Y., Yu, J., Hua, Y., Dong, X., Ren, Z.: Distributed formation flight for fixed-wing UAVs based on cooperative moving path following under wind disturbances. In: 2021 China Automation Congress (CAC), pp. 3114–3119. IEEE (2021)
Wang, Y., Wang, D., Zhu, S.: Cooperative moving path following for multiple fixed-wing unmanned aerial vehicles with speed constraints. Automatica 100, 82–89 (2019). https://doi.org/10.1016/j.automatica.2018.11.004
Yu, X., Liu, L.: Distributed circular formation control of ring-networked nonholonomic vehicles. Automatica 68, 92–99 (2016). https://doi.org/10.1016/j.automatica.2016.01.056
Zhang, M., Liu, H.H.T.: Cooperative tracking a moving target using multiple fixed-wing UAVs. J. Intell. Robot. Syst. 81(3–4), 505–529 (2015). https://doi.org/10.1007/s10846-015-0236-9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Félix, L., Oliveira, T., Cruz, G., Silva, D., Agamyrzyansc, A., Coelho, V. (2024). ISR Missions in Maritime Environment Using UAS - Contributions of the Portuguese Air Force Academy Research Centre. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 978. Springer, Cham. https://doi.org/10.1007/978-3-031-59167-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-59167-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-59166-2
Online ISBN: 978-3-031-59167-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)