ISR Missions in Maritime Environment Using UAS - Contributions of the Portuguese Air Force Academy Research Centre | SpringerLink
Skip to main content

ISR Missions in Maritime Environment Using UAS - Contributions of the Portuguese Air Force Academy Research Centre

  • Conference paper
  • First Online:
Robot 2023: Sixth Iberian Robotics Conference (ROBOT 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 978))

Included in the following conference series:

Abstract

This paper outlines the main research activities carried out by the Portuguese Air Force Academy Research Centre (CIAFA) in the domain of Unmanned Aircraft Systems (UAS) for Intelligence, Surveillance and Reconnaissance (ISR) missions in maritime environment. Firstly, a general description of CIAFA is presented. Then, an end-to-end overview of CIAFA contributions regarding UAS airframes, hardware, software and control systems architectures for ISR maritime missions is presented. The wide range of contributions in the field of UAS demonstrates how CIAFA plays an important role in the context of military robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 35749
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Academy, P.A.F.: Voamais - computer vision for the operation of unmanned aerinal vehicles in maritime and wildfire scenarios (2023). https://www.academiafa.edu.pt/p-1229-voamais

  2. Alves, B., et al.: Design of a hydrogen powered small electric fixed-wing UAV with VTOL capability. In: Marta, A.C., Suleman, A. (eds.) International Conference on Multidisciplinary Design Optimization of Aerospace Systems, pp. 290–304. ECCOMAS, Aerobest 2021, Lisbon, Portugal (2021). ISBN: 978-989-99424-8-6

    Google Scholar 

  3. Alves, B., Marta, A., Félix, L.: Multidisciplinary optimisation of an eVTOL UAV with a hydrogen fuel cell. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 134–143 (2022). https://doi.org/10.1109/ICUAS54217.2022.9836228

  4. Briñón-Arranz, L., Seuret, A., Pascoal, A.: Target tracking via a circular formation of unicycles. IFAC-PapersOnLine 50(1), 5782–5787 (2017). https://doi.org/10.1016/j.ifacol.2017.08.422

    Article  Google Scholar 

  5. Coelho, V., et al.: Design of a tactical eVTOL UAV with a hydrogen fuel cell. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 94–103 (2022)https://doi.org/10.1109/ICUAS54217.2022.9836046

  6. Commission, E.: Smart unattended airborne sensor network for detection of vessels used for cross border crime and irregular entry (2017). https://cordis.europa.eu/project/id/313243

  7. Cruz, G.: Gazebo world car dataset (2023). https://github.com/charterscruz/car_detection

  8. Cruz, G., Bernardino, A.: Learning temporal features for detection on maritime airborne video sequences using convolutional LSTM. IEEE Trans. Geosci. Remote Sens. 57(9), 6565–6576 (2019)

    Article  Google Scholar 

  9. Encarnac̨ão, P., Pascoal, A.: 3D path following for autonomous underwater vehicles. In: Proceedings of the 39th Conference on Decision and Control, pp. 2977 – 2982 (2000)

    Google Scholar 

  10. Félix, M., Oliveira, T., Cruz, G., Silva, D., Alves, J., Santos, L.: Vision-based cooperative moving path following for fixed-wing UAVs. In: 2023 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 782–789. IEEE (2023)

    Google Scholar 

  11. Franco, V., Correia, J., Caetano, J., Félix, L.: Design of a class i unmanned aircraft for maritime surveillance. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1126–1135 (2019). https://doi.org/10.1109/ICUAS.2019.8798217

  12. Félix: Software in the loop simulations repository. From Github (2022). https://github.com/mg-felix/sitl-simulations

  13. Gromek, D., et al.: C-band SAR radar trials using UAV platform: Experimental results of SAR system integration on a UAV carrier. In: 2016 17th International Radar Symposium (IRS) (2016)

    Google Scholar 

  14. Jain, R.P.K.: Decentralized Cooperative Control Methods for Multiple Mobile Robotic Vehicles. Universidade do Porto (2019)

    Google Scholar 

  15. Lapierre, L., Soetanto, D., Pascoal, A.: Adaptive, non-singular path-following control of dynamic wheeled robots. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 2, pp. 1765–1770 (2003)

    Google Scholar 

  16. Manual, I.: International Aeronautical and Maritime Search and Rescue Manual. IMO Publishing, London, International Maritime Organization (2016)

    Google Scholar 

  17. Marques, L., et al.: Neutron and gamma-ray detection system coupled to a multirotor for screening of shipping container cargo. Sensors 23(1), 329 (2022)

    Article  Google Scholar 

  18. Marques, M.M., et al.: Unmanned aircraft systems in maritime operations: challenges addressed in the scope of the seagull project. In: OCEANS 2015-Genova, pp. 1–6. IEEE (2015)

    Google Scholar 

  19. Marques, M.M., et al.: An unmanned aircraft system for maritime operations: the automatic detection subsystem. Mar. Technol. Soc. J. 55(1), 38–49 (2021)

    Article  Google Scholar 

  20. Marques, M.M., et al.: Oil spills detection: challenges addressed in the scope of the seagull project. In: OCEANS 2016 MTS/IEEE Monterey, pp. 1–6. IEEE (2016)

    Google Scholar 

  21. Marques, R.: Capacidade ISR na forc̨a aérea portuguesa: Competências atuais e perspetivas futuras de aplicac̨ão de uas. Revista Científica da Academia da Forc̨a Aérea (2016)

    Google Scholar 

  22. Mendes, P., Félix, L., Oliveira, T., Franco, V.: Preliminary design of the propuslion system of a fixed wing tilt rotor quadcopter class i mini unmanned aircraft. In: Marta, A.C., Suleman, A. (eds.) International Conference on Multidisciplinary Design Optimization of Aerospace Systems, pp. 272–289. ECCOMAS, Aerobest 2021, Lisbon, Portugal (2021). ISBN: 978-989-99424-8-6

    Google Scholar 

  23. Morgado, J., Ruivo, N.: Proposta de projeto, submetida à direção geral de recursos da defesa nacional do ministério da defesa nacional, pela força aérea portuguesa: Desenvolvimento de tecnologia uav para utilização de âmbito conjunto e dual (troante). Academia da Força Aérea, Sintra (2014)

    Google Scholar 

  24. Morgado, J., Santos, A., Caetano, J.: Portuguese air force research, development and innovation centre (CIDIFA): Rd &i in the area of autonomous unmanned aerial systems. Instituto da Defesa Nacional (2017)

    Google Scholar 

  25. Oliveira, T., Aguiar, A.P., Encarnacao, P.: Moving path following for unmanned aerial vehicles with applications to single and multiple target tracking problems. IEEE Trans. Rob. 32(5), 1062–1078 (2016). https://doi.org/10.1109/tro.2016.2593044.4

    Article  Google Scholar 

  26. Oliveira, T., Aguiar, A.P., Encarnacao, P.: Three dimensional moving path following for fixed-wing unmanned aerial vehicles. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2017). https://doi.org/10.1109/icra.2017.7989315

  27. Oliveira, T., Encarnacao, P., Aguiar, A.: Moving path following for autonomous robotic vehicles. In: 2013 European Control Conference, ECC 2013, pp. 3320–3325 (2013)

    Google Scholar 

  28. Pinto, J., et al.: Network enabled cooperation of autonomous vehicles: a communications perspective. In: OCEANS 2017 - Aberdeen. IEEE (2017)

    Google Scholar 

  29. Pires, C., Damas, B., Bernardino, A.: An efficient cascaded model for ship segmentation in aerial images. IEEE Access 10, 31942–31954 (2022)

    Article  Google Scholar 

  30. Real-Arce, D.A., et al.: A new integrated border security approach: the fp7 perseus project. Mar. Technol. Soc. J. 50(4), 14–25 (2016)

    Article  Google Scholar 

  31. Ribeiro, R., et al.: Towards the automation of wildfire monitoring with aerial vehicles: the firefront project. In: Rousseau, J.J., Kapralos, B. (eds.) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges, pp. 183–193. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37742-6_15

  32. Ribeiro, R., Cruz, G., Matos, J., Bernardino, A.: A data set for airborne maritime surveillance environments. IEEE Trans. Circuits Syst. Video Technol. 29(9), 2720–2732 (2017)

    Article  Google Scholar 

  33. Saloio, J.: Study of photovoltaic cells for UAV applications. Master’s thesis, Academia da Forc̨a Aérea (2023)

    Google Scholar 

  34. Santos, L., Oliveira, T., Cruz, G.: Formation flight control for search missions in a maritime Environment using UAVs. In: Proceedings of the Conference International Society of Military Sciences 2022. International Society of Military Sciences, ISMS, Military University Institute of Portugal (2022)

    Google Scholar 

  35. Shi, Y., Yu, J., Hua, Y., Dong, X., Ren, Z.: Distributed formation flight for fixed-wing UAVs based on cooperative moving path following under wind disturbances. In: 2021 China Automation Congress (CAC), pp. 3114–3119. IEEE (2021)

    Google Scholar 

  36. Wang, Y., Wang, D., Zhu, S.: Cooperative moving path following for multiple fixed-wing unmanned aerial vehicles with speed constraints. Automatica 100, 82–89 (2019). https://doi.org/10.1016/j.automatica.2018.11.004

    Article  MathSciNet  Google Scholar 

  37. Yu, X., Liu, L.: Distributed circular formation control of ring-networked nonholonomic vehicles. Automatica 68, 92–99 (2016). https://doi.org/10.1016/j.automatica.2016.01.056

    Article  MathSciNet  Google Scholar 

  38. Zhang, M., Liu, H.H.T.: Cooperative tracking a moving target using multiple fixed-wing UAVs. J. Intell. Robot. Syst. 81(3–4), 505–529 (2015). https://doi.org/10.1007/s10846-015-0236-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Félix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Félix, L., Oliveira, T., Cruz, G., Silva, D., Agamyrzyansc, A., Coelho, V. (2024). ISR Missions in Maritime Environment Using UAS - Contributions of the Portuguese Air Force Academy Research Centre. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 978. Springer, Cham. https://doi.org/10.1007/978-3-031-59167-9_23

Download citation

Publish with us

Policies and ethics