Towards Integrating Knowledge Graphs into Process-Oriented Human-AI Collaboration in Industry | SpringerLink
Skip to main content

Towards Integrating Knowledge Graphs into Process-Oriented Human-AI Collaboration in Industry

  • Conference paper
  • First Online:
Software Quality as a Foundation for Security (SWQD 2024)

Abstract

Human-AI collaboration in industrial manufacturing promises to overcome current limitations by combining the flexibility of human intelligence and the scaling and processing capabilities of machine intelligence. To ensure effective collaboration between human and AI team members, we envision a software-driven coordination mechanism that orchestrates the interactions between the participants in Human-AI teaming scenarios and help to synchronize the information flow between them. A structured process-oriented approach to systems engineering aims at generalizability, deployment efficiency and enhancing the quality of the resulting software by formalizing the human-AI interaction as a BPMN process model. During runtime, this process model is executed by the teaming engine, one of the core components of the Teaming.AI software platform. By incorporating dynamic execution traces of these process models into a knowledge graph structure and linking them to contextual background knowledge, we facilitate the monitoring of variations in process executions and inference of new insights during runtime. Knowledge graphs are a powerful tool for semantic integration of diverse data, thereby significantly improving the data quality, which is still one of the biggest issues in AI-driven software solutions. We present the Teaming.AI software platform and its key components as a framework for enabling transparent teamwork between humans and AI in industry. We discuss its application in the context of an industrial use case in plastic injection molding production. Overall, this Teaming.AI platform provides a robust, flexible and accountable solution for human-AI collaboration in manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.teamingai-project.eu/.

References

  1. Leng, J., et al.: Industry 5.0: prospect and retrospect. J. Manuf. Syst. 65, 279–295 (2022). https://doi.org/10.1016/j.jmsy.2022.09.017

  2. Demir, K.A., Döven, G., Sezen, B.: Industry 5.0 and human-robot co-working. Procedia Comput. Sci. 158, 688–695 (2019). https://doi.org/10.1016/j.procs.2019.09.104

  3. Yang, K.B., et al.: Pair-up: prototyping human-AI co-orchestration of dynamic transitions between individual and collaborative learning in the classroom. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–17. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3544548.3581398

  4. du Boulay, B., Mitrovic, A., Yacef, K.: Handbook of Artificial Intelligence in Education. Edward Elgar Publishing (2023)

    Google Scholar 

  5. Bansal, G., Nushi, B., Kamar, E., Lasecki, W.S., Weld, D.S., Horvitz, E.: Beyond accuracy: the role of mental models in human-AI team performance. In: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, pp. 2–11 (2019)

    Google Scholar 

  6. Zhang, R., McNeese, N.J., Freeman, G., Musick, G.: “An Ideal Human”: expectations of AI teammates in human-AI teaming. Proc. ACM Hum.-Comput. Interact. 4(246), 1–246:25 (2021). https://doi.org/10.1145/3432945

  7. Object Management Group: Business Process Model and Notation (BPMN): Version 2.0. OMG (2011)

    Google Scholar 

  8. Allweyer, T.: BPMN 2.0: Introduction to the Standard for Business Process Modeling. BoD – Books on Demand (2016)

    Google Scholar 

  9. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54 71:1–71:37 (2021). https://doi.org/10.1145/3447772

  10. Krause, F., Kurniawan, K., Kiesling, E., Paulheim, H., Polleres, A.: On the representation of dynamic BPMN process executions in knowledge graphs. In: Ortiz-Rodriguez, F., Villazón-Terrazas, B., Tiwari, S., Bobed, C. (eds.) Knowledge Graphs and Semantic Web, pp. 97–105. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47745-4_8

  11. Dai, Y., Wang, S., Xiong, N.N., Guo, W.: A survey on knowledge graph embedding: approaches, applications and benchmarks. Electronics 9, 750 (2020). https://doi.org/10.3390/electronics9050750

    Article  Google Scholar 

  12. Annane, A., Aussenac-Gilles, N., Kamel, M.: BBO: BPMN 2.0 based ontology for business process representation. In: Proceedings of the 20th European Conference on Knowledge Management. ACPI (2019). https://doi.org/10.34190/KM.19.113

  13. Natschläger, C.: Towards a BPMN 2.0 ontology. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) Business Process Model and Notation, vol. 95, pp. 1–15. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25160-3_1

  14. Di Martino, B., Esposito, A., Nacchia, S., Maisto, S.A.: Semantic annotation of BPMN: current approaches and new methodologies. In: Proceedings of the 17th International Conference on Information Integration and Web-Based Applications & Services, pp. 1–5. Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2837185.2837257

  15. Corea, C., Fellmann, M., Delfmann, P.: Ontology-based process modelling - will we live to see it? In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) Conceptual Modeling, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_4

  16. Rospocher, M., Ghidini, C., Serafini, L.: An ontology for the business process modelling notation. In: Formal Ontology in Information Systems-Proceedings of the Eighth International Conference, FOIS2014, 22–25 September 2014, Rio de Janeiro, Brazil, pp. 133–146. IOS Press (2014)

    Google Scholar 

  17. Bachhofner, S., Kiesling, E., Revoredo, K., Waibel, P., Polleres, A.: Automated process knowledge graph construction from BPMN models. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) Database and Expert Systems Applications, vol. 13426, pp. 32–47. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-12423-5_3

  18. Thomas, O., Fellmann M.A.M.: Semantic process modeling – design and implementation of an ontology-based representation of business processes. Bus. Inf. Syst. Eng. 1, 438–451 (2009). https://doi.org/10.1007/s12599-009-0078-8

  19. Othman, U., Yang, E.: Human-robot collaborations in smart manufacturing environments: review and outlook. Sensors 23, 5663 (2023). https://doi.org/10.3390/s23125663

    Article  Google Scholar 

  20. Feddoul, Y., Ragot, N., Duval, F., Havard, V., Baudry, D., Assila, A.: Exploring human-machine collaboration in industry: a systematic literature review of digital twin and robotics interfaced with extended reality technologies. Int. J. Adv. Manuf. Technol. 129, 1917–1932 (2023). https://doi.org/10.1007/s00170-023-12291-3

    Article  Google Scholar 

  21. Hoch, T., et al.: Teaming.AI: enabling human-AI teaming intelligence in manufacturing. In: Proceedings of Interoperability for Enterprise Systems and Applications Workshops Co-Located with 11th International Conference on Interoperability for Enterprise Systems and Applications (I-ESA 2022), Valencia, Spain (2022)

    Google Scholar 

  22. Wang, X., Chen, W.: Knowledge graph data management: models, methods, and systems. In: Leong Hou, U., Yang, J., Cai, Y., Karlapalem, K., Liu, A., Huang, X. (eds.) Web Information Systems Engineering, vol. 1155, pp. 3–12. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3281-8_1

  23. Tiwari, S., Al-Aswadi, F.N., Gaurav, D.: Recent trends in knowledge graphs: theory and practice. Soft. Comput. 25, 8337–8355 (2021). https://doi.org/10.1007/s00500-021-05756-8

    Article  Google Scholar 

  24. Miller, J.A., Mahmud, R.: Research directions in process modeling and mining using knowledge graphs and machine learning. In: Qingyang, W., Zhang, L.-J. (eds.) Services Computing – SCC 2022, vol. 13738, pp. 86–100. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23515-3_7

  25. Krause, F., et al.: Managing human-AI collaborations within industry 5.0 scenarios via knowledge graphs: key challenges and lessons learned. Frontiers Artif. Intell., 1–30 (2023)

    Google Scholar 

  26. Aagesen, G., Krogstie, J.: BPMN 2.0 for modeling business processes. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1: Introduction, Methods, and Information Systems, pp. 219–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45100-3_10

  27. Prades, L., Romero, F., Estruch, A., García-Dominguez, A., Serrano, J.: Defining a methodology to design and implement business process models in BPMN according to the standard ANSI/ISA-95 in a manufacturing enterprise. Procedia Eng. 63, 115–122 (2013). https://doi.org/10.1016/j.proeng.2013.08.283

    Article  Google Scholar 

  28. Erasmus, J., Vanderfeesten, I., Traganos, K., Grefen, P.: Using business process models for the specification of manufacturing operations. Comput. Ind. 123, 103297 (2020). https://doi.org/10.1016/j.compind.2020.103297

    Article  Google Scholar 

  29. Dibowski, H., Schmid, S., Svetashova, Y., Henson, C., Tran, T.: Using semantic technologies to manage a data lake: data catalog, provenance and access control (2020)

    Google Scholar 

  30. Camunda Services GmbH: The Camunda BPM Manual (2021). https://docs.camunda.org/manual/7.7/

  31. Garg, N.: Apache Kafka. Packt Publishing Birmingham, UK (2013)

    Google Scholar 

  32. Pérez, A.A., Estrada-Lugo, H.D., Fernández, E.M.-E., Leva, M.C., Aperribai, J., Aranburu, A.: Modifying a manufacturing task for teamwork between humans and AI: initial data collection to guide requirements specifications. In: Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022), Dublin, Ireland (2022)

    Google Scholar 

  33. Haindl, P., Hoch, T., Dominguez, J., Aperribai, J., Ure, N.K., Tunçel, M.: Quality characteristics of a software platform for human-AI teaming in smart manufacturing. In: Vallecillo, A., Visser, J., Pérez-Castillo, R. (eds.) Quality of Information and Communications Technology, pp. 3–17. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14179-9_1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Heinzl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heinzl, B. et al. (2024). Towards Integrating Knowledge Graphs into Process-Oriented Human-AI Collaboration in Industry. In: Bludau, P., Ramler, R., Winkler, D., Bergsmann, J. (eds) Software Quality as a Foundation for Security. SWQD 2024. Lecture Notes in Business Information Processing, vol 505. Springer, Cham. https://doi.org/10.1007/978-3-031-56281-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56281-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56280-8

  • Online ISBN: 978-3-031-56281-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics