Abstract
In this paper, we propose a novel approach to consider multiple dimensions of relevance in cross-encoder re-ranking. On the one hand, cross-encoders constitute an effective solution for re-ranking when considering a single relevance dimension such as topicality, but are not designed to straightforwardly account for additional relevance dimensions. On the other hand, the majority of re-ranking models accounting for multdimensional relevance are often based on the aggregation of multiple relevance scores at the re-ranking stage, leading to potential compensatory effects. To address these issues, in the proposed solution we enhance the candidate documents retrieved by a first-stage lexical retrieval model with suitable relevance statements related to distinct relevance dimensions, and then perform a re-ranking on them with cross-encoders. In this work we focus, in particular, on an extra dimension of relevance beyond topicality, namely, credibility, to address health misinformation in the Consumer Health Search task. Experimental evaluations are performed by considering publicly available datasets; our results show that the proposed approach statistically outperforms state-of-the-art aggregation-based and cross-encoder re-rankers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
I.e., open-source scientific articles extracted from reputed and trustworthy medical journals such as the Journal of the American Medical Association (JAMA) and eLife. .
- 2.
References
Abualsaud, M., et al.: Uwaterloomds at the TREC 2021 health misinformation track. In: Proceedings of the Thirtieth Retrieval Conference Proceedings (TREC 2021), pp. 1–18. National Institute of Standards and Technology (NIST), Special Publication (2021)
Abualsaud, M., Lioma, C., Maistro, M., Smucker, M.D., Guido, Z.: Overview of the TREC 2019 decision track (2020). https://api.semanticscholar.org/CorpusID:221857114
Al-Hajj, M., Jarrar, M.: Arabglossbert: fine-tuning bert on context-gloss pairs for WSD. arXiv preprint arXiv:2205.09685 (2022)
Anand, M., Zhang, J., Ding, S., Xin, J., Lin, J.: Serverless bm25 search and bert reranking. In: DESIRES, pp. 3–9 (2021)
Askari, A., Abolghasemi, A., Pasi, G., Kraaij, W., Verberne, S.: Injecting the bm25 score as text improves bert-based re-rankers. arXiv preprint arXiv:2301.09728 (2023)
Aslam, J.A., Montague, M.: Models for metasearch. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 276–284 (2001)
Bondarenko, A., et al.: Webis at TREC 2021: deep learning, health misinformation, and podcasts tracks. In: The Thirtieth Retrieval Conference Proceedings (TREC 2021), pp. 500, 335 (2021)
Boualili, L., Moreno, J.G., Boughanem, M.: Markedbert: integrating traditional IR cues in pre-trained language models for passage retrieval. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2020), pp. 1977–1980. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3397271.3401194
Boualili, L., Moreno, J.G., Boughanem, M.: Highlighting exact matching via marking strategies for ad hoc document ranking with pretrained contextualized language models. Inf. Retriev. J. 25(4), 414–460 (2022). https://doi.org/10.1007/s10791-022-09414-x
Chen, Y., et al.: Cdevalsumm: an empirical study of cross-dataset evaluation for neural summarization systems. arXiv preprint arXiv:2010.05139 (2020)
Clarke, C.L.A., Maistro, M., Rizvi, S., Smucker, M.D., Zuccon, G.: Overview of the TREC 2020 health misinformation track (2020). https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.HM.pdf
Clarke, C.L.A., Maistro, M., Seifikar, M., Smucker, M.D.: Overview of the TREC 2022 health misinformation track. In: 30th Retrieval Conference, TREC 2021, vol. 500, 338, pp. 15–19. Gaithersburg, Maryland (2021)
Clarke, C.L.A., Rizvi, S., Smucker, M.D., Maistro, M., Zuccon, G.: Overview of the TREC 2021 health misinformation track. In: Text Retrieval Conference (2021). https://api.semanticscholar.org/CorpusID:235600234
Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. Proc. VLDB Endowm. 2(1), 337–348 (2009)
Cormack, G.V., Clarke, C.L., Buettcher, S.: Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 758–759 (2009)
da Costa Pereira, C., Dragoni, M., Pasi, G.: Multidimensional relevance: a new aggregation criterion. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) Advances in Information Retrieval. ECIR 2009. LNCS, vol. 5478, pp. 264–275. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00958-7_25
da Costa Pereira, C., Dragoni, M., Pasi, G.: A prioritized “and” aggregation operator for multidimensional relevance assessment. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009: Emergent Perspectives in Artificial Intelligence. AI*IA 2009. LNCS, vol. 5883, pp. 72–81. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10291-2_8
da Costa Pereira, C., Dragoni, M., Pasi, G.: Multidimensional relevance: prioritized aggregation in a personalized information retrieval setting. Inf. Process. Manag. 48(2), 340–357 (2012). https://doi.org/10.1016/j.ipm.2011.07.001
Daoud, M., Tamine, L., Boughanem, M.: A personalized graph-based document ranking model using a semantic user profile. In: De Bra, P., Kobsa, A., Chin, D. (eds.) User Modeling, Adaptation, and Personalization. UMAP 2010. LNCS, vol. 6075, pp. 171–182. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13470-8_17
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis (2019). https://doi.org/10.18653/v1/N19-1423
Fernández-Pichel, M., Losada, D.E., Pichel, J.C.: A multistage retrieval system for health-related misinformation detection. Eng. Appl. Artif. Intell. 115, 105211 (2022), https://api.semanticscholar.org/CorpusID:250932569
Fernández-Pichel, M., Losada, D.E., Pichel, J.C., Elsweiler, D.: Citius at the trec 2020 health misinformation track. In: TREC (2020)
Fox, E.A.: Combination of multiple searches. In: Proceedings of the Second Text Retrieval Conference, August/September 1993 (1993)
Fox, E.A., Koushik, M.P., Shaw, J., Modlin, R., Rao, D., et al.: Combining evidence from multiple searches. In: The First Text Retrieval Conference (TREC-1), pp. 319–328 (1993)
Gao, L., Dai, Z., Chen, T., Fan, Z., Van Durme, B., Callan, J.:. Complement lexical retrieval model with semantic residual embeddings. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. LNCS, vol. 12656, pp. 146–160. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72113-8_10
Goeuriot, L., et al.: Clef 2017 ehealth evaluation lab overview. In: Conference and Labs of the Evaluation Forum (2017). https://api.semanticscholar.org/CorpusID:206705118
Goeuriot, L., et al.: CLEF eHealth evaluation lab 2021. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) Advances in Information Retrieval, ECIR 2021. LNCS, vol. 12657, pp. 593–600. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72240-1_69
Goeuriot, L., et al.: Overview of the clef ehealth 2020 task 2: consumer health search with ad hoc and spoken queries. In: Conference and Labs of the Evaluation Forum (2020). https://api.semanticscholar.org/CorpusID:225073918
Goeuriot, L., et al.: Overview of the clef ehealth evaluation lab 2020. In: Arampatzis, A., et al. (eds.) Experimental IR Meets Multilinguality, Multimodality, and Interaction. LNCS, vol. 12260, pp. 255–271. Springer, Cham (2020)
Huang, Y., Xu, Q., Wu, S., Nugent, C., Moore, A.: Fight against covid-19 misinformation via clustering-based subset selection fusion methods. In: ROMCIR 2022 CEUR Workshop Proceedings, vol. 3138, pp. 11–26 (2022)
Kamphuis, C., de Vries, A.P., Boytsov, L., Lin, J.: Which bm25 do you mean? a large-scale reproducibility study of scoring variants. In: Jose, J.M., et al. (eds.) Advances in Information Retrieval. LNCS, vol. 12036, pp. 28–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_4
Khattab, O., Zaharia, M.: Colbert: efficient and effective passage search via contextualized late interaction over bert. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 39–48 (2020)
Lee, J., et al.: Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)
Li, L., et al.: Markbert: marking word boundaries improves chinese bert. arXiv preprint arXiv:2203.06378 (2022)
Lima, L.C., Wright, D.B., Augenstein, I., Maistro, M.: University of copenhagen participation in TREC health misinformation track 2020. arXiv preprint arXiv:2103.02462 (2021)
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30 (2017)
Macdonald, C., Tonellotto, N., MacAvaney, S., Ounis, I.: Pyterrier: declarative experimentation in python from bm25 to dense retrieval. In: Proceedings of the 30th ACM International Conference on Information Knowledge Management (CIKM 2021), pp. 4526–4533. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3459637.3482013
Moulahi, B., Tamine, L., Yahia, S.B.: i a ggregator: multidimensional relevance aggregation based on a fuzzy operator. J. Am. Soc. Inf. Sci. 65(10), 2062–2083 (2014)
Nguyen, M., Kishan, K., Nguyen, T., Chadha, A., Vu, T.: Efficient fine-tuning large language models for knowledge-aware response planning. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds.) Joint European Conference on Machine Learning and Knowledge Discovery in Databases. LNCS, vol. 14170, pp. 593–611. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43415-0_35
Nogueira, R., Cho, K.: Passage re-ranking with bert. arXiv preprint arXiv:1901.04085 (2019)
Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, p. 12. Curran Associates Inc., Red Hook (2019)
Pradeep, R., Ma, X., Nogueira, R., Lin, J.J., Cheriton, D.R.: Vera: prediction techniques for reducing harmful misinformation in consumer health search. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (2021). https://api.semanticscholar.org/CorpusID:235477259
Pradeep, R., et al.: H2oloo at TREC 2020: when all you got is a hammer... deep learning, health misinformation, and precision medicine. Corpus 5(d3), d2 (2020)
Putri, D.G.P., Viviani, M., Pasi, G.: Social search and task-related relevance dimensions in microblogging sites. In: Aref, S., et al. (eds.) Social Informatics (SocInfo 2020). LNCS, vol. 12467, pp. 297–311. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60975-7_22
Reimers, N., Gurevych, I.: Sentence-bert: sentence embeddings using siamese bert-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2019). https://arxiv.org/abs/1908.10084
Ren, R., et al.: Rocketqav2: a joint training method for dense passage retrieval and passage re-ranking. arXiv preprint arXiv:2110.07367 (2021)
Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 232–241. Springer, Heidelberg (1994). https://doi.org/10.1007/978-1-4471-2099-5_24
Robertson, S., Zaragoza, H., et al.: The probabilistic relevance framework: Bm25 and beyond. Found. Trends® Inf. Retriev. 3(4), 333–389 (2009)
Schlicht, I.B., de Paula, A.F.M., Rosso, P.: UPV at TREC health misinformation track 2021 ranking with SBERT and quality estimators. arXiv preprint arXiv:2112.06080 (2021)
Upadhyay, R., Pasi, G., Viviani, M. (2022). An unsupervised approach to genuine health information retrieval based on scientific evidence. In: Chbeir, R., Huang, H., Silvestri, F., Manolopoulos, Y., Zhang, Y. (eds.) Web Information Systems Engineering (WISE 2022). LNCS, vol. 13724, pp. 119–135. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20891-1_10
Van Opijnen, M., Santos, C.: On the concept of relevance in legal information retrieval. Artif. Intell. Law 25, 65–87 (2017)
Viviani, M., Pasi, G.: Credibility in social media: opinions, news, and health information-a survey. Wiley Interdiscip. Rev.: Data Mining Knowl. Discov. 7(5), e1209 (2017)
Wallace, E., Wang, Y., Li, S., Singh, S., Gardner, M.: Do NLP models know numbers? probing numeracy in embeddings. arXiv preprint arXiv:1909.07940 (2019)
Weisstein, E.W.: Bonferroni correction (2004). https://mathworld.wolfram.com/
Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language processing. arXiv preprint arXiv:1910.03771 (2019)
Zhang, B., Naderi, N., Jaume-Santero, F., Teodoro, D.: Ds4dh at TREC health misinformation 2021: multi-dimensional ranking models with transfer learning and rank fusion. arXiv preprint arXiv:2202.06771 (2022)
Zhang, B., Naderi, N., Mishra, R., Teodoro, D.: Improving online health search via multi-dimensional information quality models based on deep learning. medRxiv, pp. 2023–04 (2023)
Zhang, D., Vakili Tahami, A., Abualsaud, M., Smucker, M.D.: Learning trustworthy web sources to derive correct answers and reduce health misinformation in search. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2099–2104 (2022)
Zhuang, S., Zuccon, G.: Tilde: term independent likelihood model for passage re-ranking. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1483–1492 (2021)
Acknowledgements
This work was supported by the EU Horizon 2020 ITN/ETN on Domain Specific Systems for Information Extraction and Retrieval (DoSSIER), H2020-EU.1.3.1., ID: 860721, https://dossier-project.eu/.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Data and Code Availability
The data used in this article are publicly accessible at: https://github.com/ikr3-lab/TREC-CLEF-HealthMisinfoSubdatasets. The code for the implementation and evaluation of the proposed model is publicly accessible at: https://github.com/ikr3-lab/Multidimensional-Cross-Encoder-Reranking.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Upadhyay, R., Askari, A., Pasi, G., Viviani, M. (2024). Beyond Topicality: Including Multidimensional Relevance in Cross-encoder Re-ranking. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14608. Springer, Cham. https://doi.org/10.1007/978-3-031-56027-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-56027-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56026-2
Online ISBN: 978-3-031-56027-9
eBook Packages: Computer ScienceComputer Science (R0)