Abstract
Many control problems require running numerous simulations to find a suitable configuration for the controller’s parameters. Population-based distributed algorithms can be used to speed up this procedure. One way to do this is to use multiple independent populations, each running an independent search algorithm in parallel. It is difficult to find the ideal configuration for these algorithms, such as the number of swarms, defining how particles are exchanged between swarms, and especially the parameters that affect exploration and exploitation in the search. We suggest a version of Particle Swarm Optimization (PSO) that includes a Fuzzy Inference System (FIS) to change the algorithm parameters dynamically. The adjustment considers two variables: population diversity and the number of iterations performed on the population. As an output of the FIS, we obtain the adapted parameters, representing the new values for the social and cognitive coefficients to be used in the next iteration. We aim to evaluate if this strategy helps minimize the evaluation time and minimize the root-mean-square error (RMSE). As a case study, the distributed PSO algorithm is applied to optimize the membership functions of a fuzzy controller for tracking the trajectory of an autonomous mobile robot. When compared to other configuration strategies, experimental results achieve a similar RMSE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jain, M., Saihjpal, V., Singh, N., Singh, S.B.: An overview of variants and advancements of pso algorithm. Appl. Sci. 12(17), 8392 (2022)
Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546). vol. 1, pp. 101–106. IEEE (2001)
Xia, X., Gui, L., Zhan, Z.H.: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting. Appl. Soft Comput. 67, 126–140 (2018)
Kennedy, J.: Swarm intelligence. In: Handbook of Nature-Inspired and Innovative Computing, pp. 187–219. Springer (2006)
Miramontes, I., Melin, P.: Interval type-2 fuzzy approach for dynamic parameter adaptation in the bird swarm algorithm for the optimization of fuzzy medical classifier. Axioms 11(9), 485 (2022)
Vargas, Y., Chen, S., Otero, J.: Estrategias para mejorar el balance entre exploración y explotación en optimización de enjambre de partículas. Universidad de la Habana, Facultad de Matemticas y Computacin, Diciembre de (2011)
García-Valdez, M., Mancilla, A., Castillo, O., Merelo-Guervós, J.J.: Distributed and asynchronous population-based optimization applied to the optimal design of fuzzy controllers. Symmetry 15(2), 467 (2023)
Clerc, M.: Particle Swarm Optimization, vol. 93. Wiley (2010)
Olivas, F., Valdez, F., Castillo, O., Melin, P.: Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft Comput. 20, 1057–1070 (2016)
Mancilla, A., Castillo, O., García-Valdez, M.: Optimization of fuzzy controllers using distributed bioinspired methods with random parameters. In: Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics, pp. 189–197. Springer (2023)
Wang, H., Sun, H., Li, C., Rahnamayan, S., Pan, J.S.: Diversity enhanced particle swarm optimization with neighborhood search: Inf. Sci. 223, 119–135 (2013)
Cheng, S., Shi, Y.: Diversity control in particle swarm optimization. In: 2011 IEEE Symposium on Swarm Intelligence, pp. 1–9. IEEE (2011)
Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016). (publisher: IEEE)
Acknowledgements
This work is financed in part by Project 18186.23-P of 2021 TecNM research grants.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mancilla, A., Castillo, O., García-Valdez, M. (2024). Fuzzy Adaptation of Parameters in a Multi-swarm Particle Swarm Optimization (PSO) Algorithm Applied to the Optimization of a Fuzzy Controller. In: Castillo, O., Melin, P. (eds) New Horizons for Fuzzy Logic, Neural Networks and Metaheuristics. Studies in Computational Intelligence, vol 1149. Springer, Cham. https://doi.org/10.1007/978-3-031-55684-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-55684-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55683-8
Online ISBN: 978-3-031-55684-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)