Fuzzy Adaptation of Parameters in a Multi-swarm Particle Swarm Optimization (PSO) Algorithm Applied to the Optimization of a Fuzzy Controller | SpringerLink
Skip to main content

Fuzzy Adaptation of Parameters in a Multi-swarm Particle Swarm Optimization (PSO) Algorithm Applied to the Optimization of a Fuzzy Controller

  • Chapter
  • First Online:
New Horizons for Fuzzy Logic, Neural Networks and Metaheuristics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1149))

  • 148 Accesses

Abstract

Many control problems require running numerous simulations to find a suitable configuration for the controller’s parameters. Population-based distributed algorithms can be used to speed up this procedure. One way to do this is to use multiple independent populations, each running an independent search algorithm in parallel. It is difficult to find the ideal configuration for these algorithms, such as the number of swarms, defining how particles are exchanged between swarms, and especially the parameters that affect exploration and exploitation in the search. We suggest a version of Particle Swarm Optimization (PSO) that includes a Fuzzy Inference System (FIS) to change the algorithm parameters dynamically. The adjustment considers two variables: population diversity and the number of iterations performed on the population. As an output of the FIS, we obtain the adapted parameters, representing the new values for the social and cognitive coefficients to be used in the next iteration. We aim to evaluate if this strategy helps minimize the evaluation time and minimize the root-mean-square error (RMSE). As a case study, the distributed PSO algorithm is applied to optimize the membership functions of a fuzzy controller for tracking the trajectory of an autonomous mobile robot. When compared to other configuration strategies, experimental results achieve a similar RMSE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 20591
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 25739
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jain, M., Saihjpal, V., Singh, N., Singh, S.B.: An overview of variants and advancements of pso algorithm. Appl. Sci. 12(17), 8392 (2022)

    Article  Google Scholar 

  2. Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546). vol. 1, pp. 101–106. IEEE (2001)

    Google Scholar 

  3. Xia, X., Gui, L., Zhan, Z.H.: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting. Appl. Soft Comput. 67, 126–140 (2018)

    Article  Google Scholar 

  4. Kennedy, J.: Swarm intelligence. In: Handbook of Nature-Inspired and Innovative Computing, pp. 187–219. Springer (2006)

    Google Scholar 

  5. Miramontes, I., Melin, P.: Interval type-2 fuzzy approach for dynamic parameter adaptation in the bird swarm algorithm for the optimization of fuzzy medical classifier. Axioms 11(9), 485 (2022)

    Article  Google Scholar 

  6. Vargas, Y., Chen, S., Otero, J.: Estrategias para mejorar el balance entre exploración y explotación en optimización de enjambre de partículas. Universidad de la Habana, Facultad de Matemticas y Computacin, Diciembre de (2011)

    Google Scholar 

  7. García-Valdez, M., Mancilla, A., Castillo, O., Merelo-Guervós, J.J.: Distributed and asynchronous population-based optimization applied to the optimal design of fuzzy controllers. Symmetry 15(2), 467 (2023)

    Article  Google Scholar 

  8. Clerc, M.: Particle Swarm Optimization, vol. 93. Wiley (2010)

    Google Scholar 

  9. Olivas, F., Valdez, F., Castillo, O., Melin, P.: Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft Comput. 20, 1057–1070 (2016)

    Article  Google Scholar 

  10. Mancilla, A., Castillo, O., García-Valdez, M.: Optimization of fuzzy controllers using distributed bioinspired methods with random parameters. In: Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics, pp. 189–197. Springer (2023)

    Google Scholar 

  11. Wang, H., Sun, H., Li, C., Rahnamayan, S., Pan, J.S.: Diversity enhanced particle swarm optimization with neighborhood search: Inf. Sci. 223, 119–135 (2013)

    Google Scholar 

  12. Cheng, S., Shi, Y.: Diversity control in particle swarm optimization. In: 2011 IEEE Symposium on Swarm Intelligence, pp. 1–9. IEEE (2011)

    Google Scholar 

  13. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016). (publisher: IEEE)

    Google Scholar 

Download references

Acknowledgements

This work is financed in part by Project 18186.23-P of 2021 TecNM research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Mancilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mancilla, A., Castillo, O., García-Valdez, M. (2024). Fuzzy Adaptation of Parameters in a Multi-swarm Particle Swarm Optimization (PSO) Algorithm Applied to the Optimization of a Fuzzy Controller. In: Castillo, O., Melin, P. (eds) New Horizons for Fuzzy Logic, Neural Networks and Metaheuristics. Studies in Computational Intelligence, vol 1149. Springer, Cham. https://doi.org/10.1007/978-3-031-55684-5_1

Download citation

Publish with us

Policies and ethics