In Defense of Scene Graph Generation for Human-Robot Open-Ended Interaction in Service Robotics | SpringerLink
Skip to main content

In Defense of Scene Graph Generation for Human-Robot Open-Ended Interaction in Service Robotics

  • Conference paper
  • First Online:
RoboCup 2023: Robot World Cup XXVI (RoboCup 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14140))

Included in the following conference series:

  • 462 Accesses

Abstract

Compositional relations represent a good source of information in the task of scene understanding. However, current approaches in domestic service robotics only scratch the surface of the benefits of compositional relations by leveraging only their spatial component. In this position paper, we propose a new perspective on the use of compositional relations as a means to extract meaning from context in open-ended interactions. We especially design a multi-layer representation based on scene graphs that encapsulates four different dimensions of knowledge. To exploit this new representation, we introduce a new large-scale dataset for indoor service robots with high-quality scene graph annotations. We then argue for the opportunities of using this representation to easily extract a wide range of fine-grained information about human interaction with context (All data and code are available at https://github.com/Maelic/IndoorVG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://huggingface.co/sentence-transformers/all-mpnet-base-v2.

  2. 2.

    https://github.com/waxnkw/IETrans-SGG.pytorch.

References

  1. Agia, C., et al.: Taskography: evaluating robot task planning over large 3D scene graphs. In: Conference on Robot Learning. PMLR (2022)

    Google Scholar 

  2. Amiri, S., Chandan, K., Zhang, S.: Reasoning with scene graphs for robot planning under partial observability. IEEE Robot. Autom. Lett. 7(2), 5560–5567 (2022)

    Article  Google Scholar 

  3. Beetz, M., et al.: Know rob 2.0: a 2nd generation knowledge processing framework for cognition-enabled robotic agents. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2018)

    Google Scholar 

  4. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  5. Chatpatanasiri, R.: GPT3 and commonsense reasoning (2021). https://agi.miraheze.org/wiki/GPT3_and_Commonsense_Reasoning. Accessed 30 Apr 2023

  6. De Magistris, G., et al.: Vision-based holistic scene understanding for context-aware human-robot interaction. In: Bandini, S., Gasparini, F., Mascardi, V., Palmonari, M., Vizzari, G. (eds.) AIxIA 2021. LNCS, vol. 13196, pp. 310–325. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08421-8_21

    Chapter  Google Scholar 

  7. Gadre, S.Y., et al.: Continuous scene representations for embodied AI. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14849–14859 (2022)

    Google Scholar 

  8. Graf, F., et al.: Toward holistic scene understanding: a transfer of human scene perception to mobile robots. IEEE Robot. Autom. Mag. 29(4), 36–49 (2022)

    Article  Google Scholar 

  9. Gupta, R., et al.: Common sense data acquisition for indoor mobile robots. In: AAAI, pp. 605–610 (2004)

    Google Scholar 

  10. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  11. Lemaignan, S., et al.: Oro, a knowledge management platform for cognitive architectures in robotics. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3548–3553. IEEE (2010)

    Google Scholar 

  12. Li, L., et al.: The devil is in the labels: Noisy label correction for robust scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18869–18878 (2022)

    Google Scholar 

  13. Li, X., et al.: Embodied semantic scene graph generation. In: Proceedings of the 5th Conference on Robot Learning, pp. 1585–1594. PMLR (2022). ISSN 2640-3498

    Google Scholar 

  14. Lin, X., et al.: GPS-Net: graph property sensing network for scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3746–3753 (2020)

    Google Scholar 

  15. Cewu, L., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_51

    Chapter  Google Scholar 

  16. Paulius, D., Jelodar, A.B., Sun, Y.: Functional object-oriented network: construction & expansion. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 5935–5941 (2018)

    Google Scholar 

  17. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  18. Sado, F., et al.: Explainable goal-driven agents and robots-a comprehensive review. ACM Comput. Surv. 55(10), 1–41 (2023)

    Article  Google Scholar 

  19. Saxena, A., et al.: Robobrain: large-scale knowledge engine for robots (2015)

    Google Scholar 

  20. Tang, K., et al.: Learning to compose dynamic tree structures for visual contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6619–6628 (2019)

    Google Scholar 

  21. Tang, K., et al.: Unbiased scene graph generation from biased training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3716–3725 (2020)

    Google Scholar 

  22. Tang, K., et al.: Unbiased scene graph generation from biased training. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 3713–3722. IEEE (2020)

    Google Scholar 

  23. Xu, D., et al.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5419 (2017)

    Google Scholar 

  24. Yan, S., et al.: PCPL: predicate-correlation perception learning for unbiased scene graph generation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 265–273 (2020)

    Google Scholar 

  25. Zellers, R., et al.: Neural motifs: scene graph parsing with global context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5831–5840 (2018)

    Google Scholar 

  26. Zhang, A., et al.: Fine-grained scene graph generation with data transfer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13687, pp. 409–424. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_24

    Chapter  Google Scholar 

Download references

Acknowledgment

This work benefits from the support of Britanny region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maëlic Neau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neau, M., Santos, P., Bosser, AG., Buche, C. (2024). In Defense of Scene Graph Generation for Human-Robot Open-Ended Interaction in Service Robotics. In: Buche, C., Rossi, A., Simões, M., Visser, U. (eds) RoboCup 2023: Robot World Cup XXVI. RoboCup 2023. Lecture Notes in Computer Science(), vol 14140. Springer, Cham. https://doi.org/10.1007/978-3-031-55015-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55015-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55014-0

  • Online ISBN: 978-3-031-55015-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics