Anthropomorphic Human-Robot Interaction Framework: Attention Based Approach | SpringerLink
Skip to main content

Anthropomorphic Human-Robot Interaction Framework: Attention Based Approach

  • Conference paper
  • First Online:
RoboCup 2023: Robot World Cup XXVI (RoboCup 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14140))

Included in the following conference series:

  • 396 Accesses

Abstract

Robots need to identify environmental cues like humans do for effective human-robot interaction (HRI). Human attention models simulate the way humans process visual information, making them useful for identifying important regions in images/videos. In this paper, we explore the use of human attention models in developing intuitive and anthropomorphic HRI. Our approach combines a saliency model and a moving object detection model. The framework is implemented using the ROS framework on Pepper, a humanoid robot. To evaluate the effectiveness of our system, we conducted both subjective and qualitative measures, including subjective rating measures to evaluate intuitiveness, trust, engagement, and user satisfaction, and quantitative measures of our human attention subsystem against state-of-the-art models. Our extensive experiments demonstrate the significant impact of our framework in enabling intuitive and anthropomorphic human-robot interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Pepper paying attention to moving bodies.

  2. 2.

    Pepper interacting with temporarily salient body.

  3. 3.

    Pepper acting humanly in a still environment.

  4. 4.

    Pepper attending a very dynamic environment and on the move.

  5. 5.

    https://www.tensorflow.org/lite/guide?hl=en.

  6. 6.

    Intel Atom™ E3845 @ 1.91GHz x 4.

References

  1. Andreasson, R., Alenljung, B., Billing, E., Lowe, R.: Affective touch in human-robot interaction: conveying emotion to the nao robot. Int. J. Soc. Robot. 10, 473–491 (2018)

    Article  Google Scholar 

  2. Beer, J.M., Fisk, A.D., Rogers, W.A.: Toward a framework for levels of robot autonomy in human-robot interaction. J. Hum.-Robot Interact. 3(2), 74 (2014)

    Article  Google Scholar 

  3. Duchaine, V., Gosselin, C.: Safe, stable and intuitive control for physical human-robot interaction. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3383–3388. IEEE (2009)

    Google Scholar 

  4. Fan, J., Zheng, P., Li, S.: Vision-based holistic scene understanding towards proactive human-robot collaboration. Robot. Comput.-Integr. Manuf. 75, 102304 (2022)

    Article  Google Scholar 

  5. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robot. Auton. Syst. 42(3–4), 143–166 (2003)

    Article  Google Scholar 

  6. Hommel, B., Müsseler, J., Aschersleben, G., Prinz, W.: The theory of event coding (TEC): a framework for perception and action planning. Behav. Brain Sci. 24(5), 849–878 (2001)

    Article  Google Scholar 

  7. Huang, C.M., Andrist, S., Sauppé, A., Mutlu, B.: Using gaze patterns to predict task intent in collaboration. Front. Psychol. 6, 1049 (2015)

    Article  Google Scholar 

  8. Jiang, L., Xu, M., Liu, T., Qiao, M., Wang, Z.: Deepvs: a deep learning based video saliency prediction approach. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 602–617 (2018)

    Google Scholar 

  9. Jost, T., Ouerhani, N., Von Wartburg, R., Müri, R., Hügli, H.: Assessing the contribution of color in visual attention. Comput. Vis. Image Underst. 100(1–2), 107–123 (2005)

    Article  Google Scholar 

  10. Kahn, P.H., Jr., et al.: What is a human?: toward psychological benchmarks in the field of human-robot interaction. Interact. Stud. 8(3), 363–390 (2007)

    Article  Google Scholar 

  11. Kiesler, S., Powers, A., Fussell, S.R., Torrey, C.: Anthropomorphic interactions with a robot and robot-like agent. Soc. Cogn. 26(2), 169–181 (2008)

    Article  Google Scholar 

  12. Li, H., Chen, G., Li, G., Yu, Y.: Motion guided attention for video salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7274–7283 (2019)

    Google Scholar 

  13. Li, X.: Human-robot interaction based on gesture and movement recognition. Signal Process. Image Commun. 81, 115686 (2020)

    Article  Google Scholar 

  14. Peters, R.J., Iyer, A., Itti, L., Koch, C.: Components of bottom-up gaze allocation in natural images. Vision. Res. 45(18), 2397–2416 (2005)

    Article  Google Scholar 

  15. Petersen, S.E., Posner, M.I.: The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89 (2012)

    Article  Google Scholar 

  16. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, London (2016)

    Google Scholar 

  17. Saran, A., Majumdar, S., Short, E.S., Thomaz, A., Niekum, S.: Human gaze following for human-robot interaction. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8615–8621. IEEE (2018)

    Google Scholar 

  18. Schauerte, B., Fink, G.A.: Focusing computational visual attention in multi-modal human-robot interaction. In: International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, pp. 1–8 (2010)

    Google Scholar 

  19. Sheridan, T.B.: Human-robot interaction: status and challenges. Hum. Factors 58(4), 525–532 (2016)

    Article  Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. Tatler, B.W., Baddeley, R.J., Gilchrist, I.D.: Visual correlates of fixation selection: effects of scale and time. Vision. Res. 45(5), 643–659 (2005)

    Article  Google Scholar 

  22. Wang, W., Shen, J., Guo, F., Cheng, M.M., Borji, A.: Revisiting video saliency: a large-scale benchmark and a new model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4894–4903 (2018)

    Google Scholar 

  23. Wang, Y., Jodoin, P.M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: CDnet 2014: an expanded change detection benchmark dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 387–394 (2014)

    Google Scholar 

  24. Wondimu, N., Visser, U., Buche, C.: Interactive video saliency prediction: the stacked-ConvLSTM approach. In: 15th International Conference on Agents and Artificial Intelligence, pp. 157–168. SCITEPRESS-Science and Technology Publications (2023)

    Google Scholar 

  25. Wondimu, N., Visser, U., Buche, C.: A new approach to moving object detection and segmentation: the XY-shift frame differencing. In: 15th International Conference on Agents and Artificial Intelligence, pp. 309–318. SCITEPRESS-Science and Technology Publications; SCITEPRESS-Science and \(\ldots \) (2023)

    Google Scholar 

  26. Wondimu, N.A., Buche, C., Visser, U.: Interactive machine learning: a state of the art review. arXiv preprint arXiv:2207.06196 (2022)

Download references

Acknowledgment

This work would not have been possible without the financial support of the Brittany region administration, French Embassy in Ethiopia and the Ethiopia Ministry of Education (MoE). We are also indebted to Brest National School of Engineering (ENIB) and specifically LAB-STICC for creating such a conducive research environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natnael Wondimu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wondimu, N., Neau, M., Dizet, A., Visser, U., Buche, C. (2024). Anthropomorphic Human-Robot Interaction Framework: Attention Based Approach. In: Buche, C., Rossi, A., Simões, M., Visser, U. (eds) RoboCup 2023: Robot World Cup XXVI. RoboCup 2023. Lecture Notes in Computer Science(), vol 14140. Springer, Cham. https://doi.org/10.1007/978-3-031-55015-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55015-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55014-0

  • Online ISBN: 978-3-031-55015-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics