A General Framework of Homomorphic Encryption for Multiple Parties with Non-interactive Key-Aggregation | SpringerLink
Skip to main content

A General Framework of Homomorphic Encryption for Multiple Parties with Non-interactive Key-Aggregation

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14584))

Included in the following conference series:

  • 743 Accesses

Abstract

Homomorphic Encryption (HE) is a useful primitive for secure computation, but it is not generally applicable when multiple parties are involved, as the authority is solely concentrated in a single party, the secret key owner. To solve this issue, several variants of HE have emerged in the context of multiparty setting, resulting in two major lines of work – Multi-Party HE (MPHE) and Multi-Key HE (MKHE). In short, MPHEs tend to be more efficient, but all parties should be specified at the beginning to collaboratively generate a public key, and the access structure is fixed throughout the entire computation. On the other hand, MKHEs have relatively poor performance but provide better flexibility in that a new party can generate its own key and join the computation anytime.

In this work, we propose a new HE primitive, called Multi-Group HE (MGHE). Stated informally, an MGHE scheme provides seamless integration between MPHE and MKHE, and has the best of both worlds. In an MGHE scheme, a group of parties jointly generates a public key for efficient single-key encryption and homomorphic operations similar to MPHE. However, it also supports computation on encrypted data under different keys, in the MKHE manner. We formalize the security and correctness notions for MGHE and discuss the relation with previous approaches.

We also present a concrete instantiation of MGHE from the BFV scheme and provide a proof-of-concept implementation to demonstrate its performance. In particular, our MGHE construction has a useful property that the key generation is simply done by aggregating individual keys without any interaction between the parties, while all the existing MPHE constructions relied on multi-round key-generation protocols. Finally, we propose a general methodology to build a multi-party computational protocol from our MGHE scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lattigo v4. ePFL-LDS, Tune Insight SA (2022). https://github.com/tuneinsight/lattigo

  2. Albrecht, M., et al.: Homomorphic encryption security standard. Tech. rep., HomomorphicEncryption.org, Toronto, Canada (2018)

    Google Scholar 

  3. Aloufi, A., Hu, P., Wong, H.W., Chow, S.S.: Blindfolded evaluation of random forests with multi-key homomorphic encryption. IEEE Trans. Depend. Secure Comput. (2019)

    Google Scholar 

  4. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic encryption in the plain model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, LNCS, vol. 12550, pp. 28–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_2

  5. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

  6. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_23

  7. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_22

  8. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_19

  9. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

  10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 1–36 (2014)

    Google Scholar 

  11. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 7417, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_8

  12. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11992, pp. 446–472. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_16

  13. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 395–412 (2019)

    Google Scholar 

  14. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from ring-LWE with compact ciphertext extension. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography. LNCS, vol. 10678, pp. 597–627. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_20

  15. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

  16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

  17. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: secure multiparty computation with dynamic participants. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 94–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_4

  18. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_31

  19. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

  20. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch. 2012, 144 (2012)

    Google Scholar 

  21. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

  22. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

  23. Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-interactive multiparty computation without correlated randomness. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 181–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_7

  24. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homomorphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_5

  25. Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

  26. Kim, T., Kwak, H., Lee, D., Seo, J., Song, Y.: Asymptotically faster multi-key homomorphic encryption from homomorphic gadget decomposition. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 726–740 (2023)

    Google Scholar 

  27. Lindell, Y.: How to simulate it—a tutorial on the simulation proof technique. In: Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography. Information Security and Cryptography. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8_6

  28. López-Alt, A., Tromer, E., Vaikuntanathan, V.: Cloud-assisted multiparty computation from fully homomorphic encryption. Cryptology ePrint Archive (2011)

    Google Scholar 

  29. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234. ACM (2012)

    Google Scholar 

  30. Mouchet, C., Bertrand, E., Hubaux, J.P.: An efficient threshold access-structure for rlwe-based multiparty homomorphic encryption. J. Cryptol. 36(2), 10 (2023)

    Article  MathSciNet  Google Scholar 

  31. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty homomorphic encryption from ring-learning-with-errors. Proc. Privacy Enhanc. Technol. 2021(4), 291–311 (2021)

    Article  Google Scholar 

  32. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

  33. Park, J.: Homomorphic encryption for multiple users with less communications. IEEE Access 9, 135915–135926 (2021)

    Article  Google Scholar 

  34. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith, A. (eds.) Theory of Cryptography. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyesun Kwak .

Editor information

Editors and Affiliations

Appendices

A Construction of MGHE with CKKS

The CKKS supports approximate arithmetic operations for complex numbers. The BFV and CKKS have similar structure, we can easily extend MGHE scheme of the CKKS. The difference is that it adds an error into the plaintext itself and additionally supports the rescaling algorithm to control the size of ciphertext. The ciphertext has a level and it decreases whenever rescaling is performed. To proceed arithmetics between two ciphertexts, they should have same level and it requires bootstrapping when level is low in order to continue evaluation. We are going to provide MGHE scheme without interactive key generation. In this description, we skip setup, key generation, and joint key generation phase since they are same as BFV. Galois automorphism is also not included since it has same procedure with the BFV. We assume the ciphertext modulus \(q = \prod _{i=1}^{L}{p_i}\) for some integers \(p_i\) and denote \(q_l = \prod _{i=1}^{l}{p_i}\).

1.1 A.1 MGHE with CKKS

\(\bullet \) \(\underline{\texttt {MG-CKKS}.\texttt{Enc}(\textsf{ek}; m)}\): For a joint encryption key \(\textsf{ek}\) and a message m, return \(\textsf{ct}\leftarrow \texttt {MP-CKKS}.\texttt{Enc}(\textsf{ek}; m)\).

\(\bullet \) \(\underline{\texttt {MG-CKKS}.\texttt{Add}(\textsf{ct}, \textsf{ct}')}\): If two given ciphertexts \(\textsf{ct}\) and \(\textsf{ct}'\) has same level, return the ciphertext \(\textsf{ct}_{add}=\textsf{ct}+ \textsf{ct}' \pmod q\). If not, modify ciphertexts to have same level before the computation.

\(\bullet \) \(\underline{\texttt {MG-CKKS}.\texttt{Mult}(\{\textsf{rlk}_j\}_{1 \le j \le k}; \textsf{ct}, \textsf{ct}')}\): Set \(\textsf{ct}\) and \(\textsf{ct}'\) have same level. Let \(\textsf{ct}=(c_i)_{0\le i\le k}\) and \(\textsf{ct}'=(c_i')_{0\le i\le k}\) be two multi-group ciphertexts and \(\{\textsf{rlk}_j\}_{1\le j\le k}\) the collection of the joint relinearization keys of groups \(I_j\) for \(1\le j\le k\). Compute \(\textsf{ct}_\mathsf {{mul}}= (c_{i,j})_{0\le i,j\le k}\) where \(c_{i,j}=c_i c_j' \pmod q\) for \(0\le i,j\le k\). Return the ciphertext \(\texttt {MG-CKKS}.\texttt{Relin}(\{\textsf{rlk}_j\}_{1 \le j \le k}; \textsf{ct}_\mathsf {{mul}})\) where \(\texttt {MG-CKKS}.\texttt{Relin}(\cdot )\) is the relinearization procedure described in Algorithm 1.

\(\bullet \) \(\underline{\texttt {MG-CKKS}.\texttt{Rescale}(\textsf{ct})}\): Given a ciphertext \(\textsf{ct}= (c_0, c_1, \dots , c_k) \in R_{q_{l}}^{k+1}\) at level l, compute \(c'_i = \left\lfloor {p_{l}^{-1} \cdot c_i}\right\rceil \) for \(1 \le i \le k\), and return \(\textsf{ct}' = (c'_0, c'_1, \dots ,c'_k) \in R_{q_{l} - 1}^{k+1}\) which is at level \(l-1\).

\(\bullet \) \(\underline{\texttt {MG-CKKS}.\texttt{Dec}(\{\textsf{sk}_j\}_{1\le j\le k};\textsf{ct})}\): Given a ciphertext \(\textsf{ct}=(c_0, c_1,\dots , c_k)\) and joint secret keys \(\textsf{sk}_j=s_j\) for \(1\le j\le k\), return \(m =\left\langle \textsf{ct}, \textsf{sk}\right\rangle = (c_0+\sum _{1\le j\le k} c_i\cdot s_j) \pmod t\).

\(\bullet \) \(\underline{\texttt {MG-CKKS}.\texttt{DistDec}(\{[\textsf{sk}_j]_i\}_{1\le j\le k, i\in I_j}, \sigma ';\textsf{ct})}\): Let \(\textsf{ct}=(c_0, \dots , c_k)\) be a multi-group ciphertext corresponding to the set of groups \( \{I_1, \dots , I_k\}\) and \([\textsf{sk}]_i=[s]_i\) be the secret of party \(i\in I_j\).

  • Partial decryption: For \(1\le j\le k\), each party \(i\in I_j\) samples \([e'_j]_i\leftarrow D_{\sigma '}\), then computes and publishes \([\mu _j]_i= c_j\cdot [s]_i+[e'_j]_i\pmod q\).

  • Merge: Compute \(m=(c_0+\sum _{1\le j\le k}\sum _{i\in I_j} [\mu _j]_i) \pmod t\).

B Noise Analysis

Before estimating a noise growth, we specify some distributions for sampling randomness or errors. Let the key distribution \(\chi \) be the distribution where each coefficient is sampled from the set \(\{0, \pm 1\}\) with probability 0.25 for each of \(-1\) and 1 and with probability 0.5 for 0. Set the error distribution \(\psi _\ell \) be the discrete Gaussian distribution of variance \(\sigma ^{2}\). We also assume that the coefficients of the polynomials are independent zero-mean random variables with the same variances. We denote by \(\textsf {Var}(a) = \textsf {Var}(a_i)\) the variance of coefficients for random variable \(a = \sum _i a_i \cdot X^{i}\) over the ring R. Then the variance of the product \(c = a \cdot b\) of two polynomials with degree n can be represented as \(\textsf {Var}(c) = n \cdot \textsf {Var}(a) \cdot \textsf {Var}(b)\) if a and b are independent. Similarly, we define variance for a vector \(\textbf{a}\in R^d\) of random variables as \(\textsf {Var}(\textbf{a}) =\frac{1}{d}\sum _{i=1}^{d}{\textsf {Var}(\textbf{a}[i])}\). We also assume that each ciphertext behaves as if it is a uniform random variable over \(R_{q}^{k+1}\). We analyze the noise growth of k-group case, each comprising \(N_{i}\) parties for \(1 \le i \le k\).

1.1 B.1 Encryption

Recall that the encryption \(\textsf{ct}= (c_0,c_1) \in R_q^2\) of \(m \in R_p\) is \(\textsf{ct}= t \cdot \textsf{ek}+ (\varDelta \cdot m + e_0, e_1) \pmod q\) where \(t \leftarrow \chi \) and \(e_{0}, e_{1} \leftarrow D_\sigma \). For \(\textsf{ek}= ({\textbf{b}}[0], \textbf{a}[0]) \in R_q^2\), we remark that \({\textbf{b}}[0] + \textbf{a}[0] \cdot s = \sum _{i \in I}[{\textbf{e}}_0]_i[0]\) and each \([{\textbf{e}}_0]_i[0]\) is sampled from \(D_\sigma \). Then, it satisfies that \(c_0 + c_1 \cdot s = \varDelta \cdot m + t ({\textbf{b}}[0] + \textbf{a}[0] \cdot s) + (e_0 + e_1 \cdot s) = \varDelta \cdot m + (t \sum _{i \in I}[{\textbf{e}}_0]_i[0] + e_{0} + e_{1} \cdot s) \pmod q\). The encryption noise \(e_{\mathsf {{enc}}} = t \sum _{i \in I}[{\textbf{e}}_0]_i[0] + e_{0} + e_{1} \cdot s\) has the variance of \(V_{\mathsf {{enc}}} = \sigma ^{2} \cdot (\frac{n|I|}{2} + 1 + \frac{n}{2}) \approx \frac{n\sigma ^{2}(|I|+1)}{2}.\)

The CKKS scheme has the same encryption error as the BFV scheme. The only difference is that there is no scaling factor \(\varDelta \) in the result of decryption.

1.2 B.2 Relinearization

In Algorithm 1 of Sect. 4.3, it satisfies that

$$\begin{aligned} \sum _{1\le i\le k}c_i''\boxdot ({\textbf{v}}_i+s_i\cdot {\textbf{u}}) &= - \sum _{1\le i\le k} r_i \cdot c_i'' + \sum _{1\le i\le k} c''_{i} \boxdot {\textbf{e}}_{i,2} \\ &= - \sum _{1\le i,j\le k} r_i \cdot (c_{i,j}\boxdot {\textbf{b}}_j) + \sum _{1 \le i \le k}{c''_{i} \boxdot {\textbf{e}}_{i,2}}\pmod {q} \end{aligned}$$

and

$$\begin{aligned} & \sum _{1\le i,j\le k} (c_{i,j}\boxdot {\textbf{d}}_i ) \cdot s_{j} \\ =& \sum _{1\le i,j\le k} {r_i \cdot \left( c_{i,j} \boxdot ({\textbf{b}}_j - {\textbf{e}}_{j,0}) \right) } + \sum _{1\le i,j\le k} s_is_j \cdot c_{i,j} + \sum _{1\le i,j\le k} {s_j \cdot (c_{i,j} \boxdot {\textbf{e}}_{i,1})} \\ =& \sum _{1\le i,j\le k} r_i\cdot (c_{i,j} \boxdot {\textbf{b}}_j) + \sum _{1\le i,j\le k} s_is_j \cdot c_{i,j} + \sum _{1\le i,j\le k}{e_{i,j}'} \pmod q \end{aligned}$$

where \(e_{i,j}'= c_{i,j} \boxdot (s_j \cdot {\textbf{e}}_{i,1} - r_i \cdot {\textbf{e}}_{j,0})\).

We denote by \(V_{g} = \textsf {Var}(h(a))\) where a is a uniform random variable over \(R_{q}\). Then, the variance of relinearization error \(e_{\mathsf {{relin}}} = \sum _{1 \le i \le k}{c''_{i} \boxdot {\textbf{e}}_{i,2}} + \sum _{1 \le i,j \le k} {e_{i,j}'} \) is obtained as follows:

$$V_{\mathsf {{relin}}} = n d V_g \sigma ^2 \sum _{1 \le i \le k}N_i^2 + 2n^2 d V_g \sigma ^2 k^2 \sum _{1 \le i \le k}N_i^2 \approx 2n^2 d V_g \sigma ^2 k \sum _{1 \le i \le k}N_i^2$$

In our implementation, we use RNS-friendly decomposition \(R_q = \prod _i{R_{p_i}}\) such that \(p_i\)’s have the same bit-size. Here, we have \(V_{g} = \frac{1}{12d} \sum ^{d}_{i=1}{p_{i}^{2}}\) for \(d = \lceil {\log q / \log {p_{i}}} \rceil \).

1.3 B.3 Multiplication

We again consider k-group case, each comprising \(N_{i}\) parties for \(1 \le i \le k\). Let \(\textsf{ct}_1\) and \(\textsf{ct}_2\) be the input ciphertexts of messages \(m_1\) and \(m_2\) respectively. Each ciphertext \(\textsf{ct}_i\) satisfies that \(\left\langle \textsf{ct}_i, \overline{\textsf{sk}}\right\rangle = q \cdot I_i + \varDelta \cdot m_i + e_i\) for \(I_i = \lfloor {\frac{1}{q} \left\langle \textsf{ct}_i, \overline{\textsf{sk}}\right\rangle } \rceil \) and some \(e_i\). Here, we have the variance \(\textsf {Var}(I_i) \approx \frac{1}{12} (1 + \frac{1}{2} kn) \approx \frac{1}{24} kn\) since \(\frac{1}{q} \cdot \textsf{ct}_i\) behaves as an uniform random variable over \(\frac{1}{q} \cdot R_{q}^{k+1}\).

The result of tensor product satisfies that \(\left\langle \textsf{ct}_1 \otimes \textsf{ct}_2, \overline{\textsf{sk}}\otimes \overline{\textsf{sk}}\right\rangle = \left\langle \textsf{ct}_1, \overline{\textsf{sk}}\right\rangle \cdot \left\langle \textsf{ct}_2, \overline{\textsf{sk}}\right\rangle = \varDelta ^2 \cdot m_1 m_2 + q \cdot (I_1 e_2 + I_2 e_1) + \varDelta \cdot (m_1 e_2 + m_2 e_1) + e_1 e_2 \pmod {q \cdot \varDelta }\) and for \(\textsf{ct}_{\mathsf {{mul}}} = \left\lfloor {\frac{p}{q} \cdot \textsf{ct}_1 \otimes \textsf{ct}_2}\right\rceil \), we have \(\left\langle \textsf{ct}_{\mathsf {{mul}}}, \overline{\textsf{sk}}\otimes \overline{\textsf{sk}}\right\rangle = \varDelta \cdot m_1 m_2 + p \cdot (I_1 e_2 + I_2 e_1) + (m_1 e_2 + m_2 e_1) + \varDelta ^{-1} \cdot e_1 e_2 + e_{rd}\) where \(e_{rd} = \left\langle \frac{p}{q} \cdot \textsf{ct}_1 \otimes \textsf{ct}_2 - \textsf{ct}_{mul}, \overline{\textsf{sk}}\otimes \overline{\textsf{sk}}\right\rangle \). That is, the multiplication error is obtained by \(e_{\mathsf {{mul}}} = p \cdot (I_1 e_2 + I_2 e_1) + (m_1 e_2 + m_2 e_1) + \varDelta ^{-1} \cdot e_1 e_2 + e_{rd}.\) From the above equation, the first term \(p \cdot (I_1 e_2 + I_2 e_1)\) dominates the whole multiplication error. Therefore, we have the variance of multiplication error by

$$V_{\mathsf {{mul}}} \approx np^2 \cdot (\textsf {Var}(I_1) \textsf {Var}(e_2) + \textsf {Var}(I_2) \textsf {Var}(e_1)) \approx \frac{1}{24} k n^2p^2 (\textsf {Var}(e_1) + \textsf {Var}(e_2)).$$

While the relinearization error has a fixed size depending on the parameters, the multiplication error increases by a certain ratio as the computation proceeds. Therefore, the total noise is eventually dominated by the multiplication error unless \((\textsf {Var}(e_1) + \textsf {Var}(e_2))\) is very small (e.g. fresh ciphertext).

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwak, H., Lee, D., Song, Y., Wagh, S. (2024). A General Framework of Homomorphic Encryption for Multiple Parties with Non-interactive Key-Aggregation. In: Pöpper, C., Batina, L. (eds) Applied Cryptography and Network Security. ACNS 2024. Lecture Notes in Computer Science, vol 14584. Springer, Cham. https://doi.org/10.1007/978-3-031-54773-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54773-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54772-0

  • Online ISBN: 978-3-031-54773-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics