Abstract
A wide variety of generative models for graphs have been proposed. They are used in drug discovery, road networks, neural architecture search, and program synthesis. Generating graphs has theoretical challenges, such as isomorphic representations – evaluating how well a generative model performs is difficult. Which model to choose depending on the application domain?
We extensively study kernel-based metrics on distributions of graph invariants and manifold-based and kernel-based metrics in graph embedding space. Manifold-based metrics outperform kernel-based metrics in embedding space. We use these metrics to compare GraphRNN and GRAN, two well-known generative models for graphs, and unveil the influence of node orderings. It shows the superiority of GRAN over GraphRNN - further, our proposed adaptation of GraphRNN with a depth-first search ordering is effective for small-sized graphs.
A guideline on good practices regarding dataset selection and node feature initialization is provided. Our work is accompanied by open-source code and reproducible experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abboud, R., Ceylan, İ.İ., Grohe, M., Lukasiewicz, T.: The surprising power of graph neural networks with random node initialization (2021)
Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Bojchevski, A., Shchur, O., Zügner, D., Günnemann, S.: NetGAN: generating graphs via random walks (2018)
Chia-Cheng Liu, H.C., Luk, K.: Auto-regressive graph generation modeling with improved evaluation methods (2019)
Cui, H., Lu, Z., Li, P., Yang, C.: On positional and structural node features for graph neural networks on non-attributed graphs (2021)
Du, Y., et al.: GraphGT: machine learning datasets for graph generation and transformation. In: NeurIPS 2021 (2021)
Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural networks for graph classification (2020)
Goyal, N., Jain, H.V., Ranu, S.: GraphGen: a scalable approach to domain-agnostic labeled graph generation. In: Proceedings of The Web Conference 2020, pp. 1253–1263 (2020)
Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2008)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium (2018)
Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016)
Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision and recall metric for assessing generative models (2019)
Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.: Learning deep generative models of graphs (2018)
Liao, R., et al.: Efficient graph generation with graph recurrent attention networks. CoRR abs/1910.00760 (2019). http://arxiv.org/abs/1910.00760
Naeem, M.F., Oh, S.J., Uh, Y., Choi, Y., Yoo, J.: Reliable fidelity and diversity metrics for generative models (2020)
O’Bray, L., Horn, M., Rieck, B., Borgwardt, K.: Evaluation metrics for graph generative models: Problems, pitfalls, and practical solutions (2021)
Sato, R., Yamada, M., Kashima, H.: Random features strengthen graph neural networks (2021)
Seitzer, M.: pytorch-fid: FID Score for PyTorch (2020). http://github.com/mseitzer/pytorch-fid. version 0.2.1
Simonovsky, M., Komodakis, N.: GraphVAE: towards generation of small graphs using variational autoencoders (2018)
Stier, J., Granitzer, M.: DeepGG: a deep graph generator. In: Abreu, P.H., Rodrigues, P.P., Fernández, A., Gama, J. (eds.) IDA 2021. LNCS, vol. 12695, pp. 313–324. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74251-5_25
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. CoRR abs/1512.00567 (2015). http://arxiv.org/abs/1512.00567
Thompson, R., Ghalebi, E., Devries, T., Taylor, G.W.: Building LEGO using deep generative models of graphs. ArXiv abs/2012.11543 (2020)
Thompson, R., Knyazev, B., Ghalebi, E., Kim, J., Taylor, G.W.: On evaluation metrics for graph generative models. In: International Conference on Learning Representations (2022). http://openreview.net/forum?id=EnwCZixjSh
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)
Weisfeiler, B., Lehman, A.: A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Tech. Inform. 2(9), 12–16 (1968)
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? (2019)
You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: GraphRNN: a deep generative model for graphs. CoRR abs/1802.08773 (2018). http://arxiv.org/abs/1802.08773
Zeng, Z., Tung, A.K., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)
Zwillinger, D., Kokoska, S.: CRC Standard Probability and Statistics Tables and Formulae Sect.14.7. Chapman & Hall/CRC, Boca Raton (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Touat, O., Stier, J., Portier, PE., Granitzer, M. (2024). GRAN Is Superior to GraphRNN: Node Orderings, Kernel- and Graph Embeddings-Based Metrics for Graph Generators. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-53969-5_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53968-8
Online ISBN: 978-3-031-53969-5
eBook Packages: Computer ScienceComputer Science (R0)