Abstract
We investigate a method to asses brain synchronization in individuals who fulfill a cooperation task. Our input is a couple of signals from functional Near-Infrared Spectroscopy Data Acquisition and Pre-processing technology that is used to capture the brain activity of an individual by measuring the oxyhemoglobin (HbO) level. Then, we use the visibility graph approach to map each HbO signal into a network. We estimate the signal synchronization by studying a global measure, related to eigenvalues of Laplacian matrix, in each constructed visibility graph. We consider the autonomous evolution of one isolated node to be a Rössler function. Then, the synchronization of signals can be characterized by a little number of parameters that could be employed to classify the sources of signal. Unlike prior research in this area, our aim is to examine the circumstances in which synchronization occurs in various individuals and within different hemispheres of the prefrontal cortexes of the same individual. Experimental results show that the conditions for synchronization vary in different individuals, and they are different even for the distinct prefrontal cortical hemispheres of the same individual.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008). https://doi.org/10.1016/j.physrep.2008.09.002
Barabási, A.-L., Pósfai, M.: Network Science. Cambridge University Press (2016)
Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press (2008)
Bhaduri, A., Ghosh, D.: Quantitative assessment of heart rate dynamics during meditation: an ecg based study with multi-fractality and visibility graph. Front. Physiol. 7,(2016). https://doi.org/10.3389/fphys.2016.00044
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U,: Complex networks: structure and dynamics. Phys. Reports 424(4–5), 175–308 (2006). https://doi.org/10.1016/j.physrep.2005.10.009
Brú, A., Gómez-Castro, D., Nuño, J.C.: Visibility to discern local from nonlocal dynamic processes. Physica A: Stat. Mech. Appl. 471, 718–723 (2017). https://doi.org/10.1016/j.physa.2016.12.078
Chen, G., Wang, X., Li, X.: Fundamentals of Complex Networks: Models, Structures and Dynamics. Willey (2015)
Ding, D., Tang, Z., Wang, Y., Ji, Z.: Synchronization of nonlinearly coupled complex networks: Distributed impulsive method. Chaos, Solitons & Fractals. 133, (2020). https://doi.org/10.1016/j.chaos.2020.109620
Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: A survey. Automatica 50(6), 1539–1564 (2014). https://doi.org/10.1016/j.automatica.2014.04.012
Estrada, E., Knight, P.A.: A First Course in Network Theory. Oxford University Press (2015)
Gonçalves, B.A., Carpi, L., Rosso, O.A., Ravetti, M.G.: Time series characterization via horizontal visibility graph and Information Theory. Phys. A: Stat. Mech. Appl. 464, 93–102 (2016). https://doi.org/10.1016/j.physa.2016.07.063
Havlin, S., et al.: Challenges in network science: Applications to infrastructures, climate, social systems and economics. Europ. Phys. J. Special Topics 214(1), 273–293 (2012). https://doi.org/10.1140/epjst/e2012-01695-x
Hou, F.Z., Li, F.W., Wang, J., Yan, F.R.: Visibility graph analysis of very short-term heart rate variability during sleep. Phys. A: Stat. Mech. Appl. 458, 140–145 (2016). https://doi.org/10.1016/j.physa.2016.03.086
Jiruska, P., de Curtis, M., Jefferys, J.G.R., Schevon, C.A., Schiff, S.J., Schindler, K.: Synchronization and desynchronization in epilepsy: controversies and hypotheses. J. Physiol. 591(4), 787–797 (2013). https://doi.org/10.1113/jphysiol.2012.239590
Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuño, J.C.: From time series to complex networks: the visibility graph. Proc. National Acad. Sci. 105(13), 4972–4975 (2008). https://doi.org/10.1073/pnas.0709247105
Lacasa, L., Luque, B., Luque, J., Nuño, J.C.: The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion. EPL (Europhysics Letters) 86(3), 30001 (2009). https://doi.org/10.1209/0295-5075/86/30001
Lacasa, L., Nicosia, V., Latora, V.: Network structure of multivariate time series. Sci. Reports. 5, (2015). https://doi.org/10.1038/srep15508
Lacasa, L., Nuñez, A., Roldán, É., Parrondo, J.M.R., Luque, B.: Time series irreversibility: a visibility graph approach. Europ. Phys. J. B 85(6),(2012). https://doi.org/10.1140/epjb/e2012-20809-8
Li, R., Mayseless, N., Balters, S., Reiss, A.L.: Dynamic inter-brain synchrony in real-life inter-personal cooperation: A functional near-infrared spectroscopy hyperscanning study. Neuroimage 238, 118263 (2021). https://doi.org/10.1016/j.neuroimage.2021.118263
Long, Xi., Fonseca, P., Aarts, R.M., Haakma, R., Foussier, J.: Modeling cardiorespiratory interaction during human sleep with complex networks. Appl. Phys. Lett. 105(20) (2014). https://doi.org/10.1063/1.4902026
Luque, B., Ballesteros, F.J., Núñez, A.M., Robledo, A.: Quasiperiodic graphs: structural design, scaling and entropic properties. J. Nonlinear Sci. 23(2), 335–342 (2012). https://doi.org/10.1007/s00332-012-9153-2
Luque, B., Lacasa, L., Ballesteros, F.J., Robledo, A.: Feigenbaum graphs: a complex network perspective of chaos. PLoS ONE 6(9), e22411 (2011). https://doi.org/10.1371/journal.pone.0022411
Ainara Mira-Iglesias, J., Conejero, A., Navarro-Pardo, E.: Natural visibility graphs for diagnosing attention deficit hyperactivity disorder (ADHD). Electron. Notes Discr. Math. 54, 337–342 (2016). https://doi.org/10.1016/j.endm.2016.09.058
Newman, M.: Networks. Oxford University Press (2018)
Osipov, G.V., Kurths, J., Zhou, C.: Synchronization in Oscillatory Networks (2007)
Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, (1998)
Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. Cambridge University Press (2001)
Sannino, S., Stramaglia, S., Lacasa, L., Marinazzo, D.: Visibility graphs for fMRI data: Multiplex temporal graphs and their modulations across resting-state networks. Network Neuroscience 1(3), 208–221 (2017). https://doi.org/10.1162/NETN_a_00012
Tang, Y., Qian, F., Gao, H., Kurths, J.: Synchronization in complex networks and its application – a survey of recent advances and challenges. Ann. Rev. Contr. 38(2), 184–198 (2014). https://doi.org/10.1016/j.arcontrol.2014.09.003
Xinyue Wang, Yu., Zhang, Y.H., Kelong, Lu., Hao, N.: Dynamic inter-brain networks correspond with specific communication behaviors: using functional near-infrared spectroscopy hyperscanning during creative and non-creative communication. Front. Human Neurosci. 16,(2022). https://doi.org/10.3389/fnhum.2022.907332
Acknowledgement
We would like to thank Guilhem Belda, President of the Semaxone company (Rochefort-du-Gard, France), for his help in developing the application and providing the audio equipment.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dhamo, X. et al. (2024). Global Synchronization Measure Applied to Brain Signals Data. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-031-53503-1_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-53503-1_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53502-4
Online ISBN: 978-3-031-53503-1
eBook Packages: EngineeringEngineering (R0)