Abstract
Amidst the growth of harmful content on social media platforms, encompassing abusive language, disrespect, and hate speech, efforts to tackle this issue persist. However, effectively preventing the impact of such content on individuals and communities remains a challenging endeavor. In this paper, we present a study using Reddit data, where we employ a tree structure to visually and comprehensively examine the impact of toxic content on communities. By applying various machine learning algorithms, we classify the toxicity of each leaf node based on its parent and grandparent nodes, as well as the overall tree’s average toxicity. Our methodology can help policymakers detect early warning signs of toxicity and redirect potentially harmful comments to less toxic directions. Our research provides a comprehensive analysis of toxicity on social media platforms, allowing for a better understanding of differences and similarities across platforms, and a deeper exploration of the impact of toxic content on individual communities. Our findings provide valuable perspectives on the prevalence and consequences of toxic content on social media platforms, and our approach can be used in future studies to provide a more nuanced understanding of this complex issue.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cheng, J., Bernstein, M., Danescu-Niculescu-Mizil, C., Leskovec, J.: Any- one can become a troll: causes of trolling behavior in online discussions. In: Proceedings of ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW17), ACM Press, pp. 1217 (2017)
Yousefi, N., Noor, N.B., Spann, B., Agarwal, N.: Towards Developing a Measure to Access Contagiousness of Toxic Tweets. In: TrueHealth 2023, Workshop on Combating Health Misinformation for Social Wellbeing, In press (2023)
Noor, N.B.: Toxicity and Redditv: A study of harmful effects on user engagement and community health (Order No. 30423680). Available from Dissertations & Theses @ the University of Arkansas at Little Rock, (2806341066) (2023)
Sahana, B.S., Sandhya, G., Tanuja, R.S., Sushma Ellur, Ajina, A.: Towards a safer conversation space: detection of toxic content in social media (student consortium). In: IEEE Sixth International Conference on Multimedia Big Data (BigMM), pp. 297-301. IEEE (2020)
Taleb, M., Hamza, A., Zouitni, M., Burmani, N., Lafkiar, S., En-Nahnahi, N.: Detection of toxicity in social media based on Natural Language Processing methods. In: International Conference on Intelligent Systems and Computer Vision (ISCV), pp. 1-7. IEEE (2022)
Kumar, A.K., and Kanisha, B.: Analysis of multiple toxicities using ML algorithms to detect toxic comments. In: 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 1561-1566. IEEE (2022)
Noor, N.B., Yousefi, N., Spann, B., Agarwal, N.: Comparing toxicity across social media platforms for COVID-19 discourse. In: The Ninth International Conference on Human and Social Analytics (2023)
DiCicco, k., Noor, N.B., Yousefi, N., Spann, B., Maleki, M., Agarwal, N.: Toxicity and networks of COVID-19 discourse communities: a tale of two media platforms. In: The 3rd Workshop on Reducing Online Misinformation through Credible Information Retrieval (2023)
Saveski, M,. Roy, B., Roy, D.: The structure of toxic conversations on Twitter. In: Proceedings of the Web Conference 2021, pp. 1086-1097 (2021)
Coletto, M., Garimella, K., Gionis, A., Lucchese, C.: Automatic controversy detection in social media: a content-independent motif-based approach. In: Online Social Networks, and Media, Vol. 3-4, pp. 22-31, ISSN 2468-6964 (2017)
Backstrom, L., Kleinberg, J., Lee, L., Danescu-Niculescu-Mizil, C.: Characterizing and curating conversation threads: expansion, focus, volume, re-entry. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 13-22 (2013)
Hessel, J., & Lee, L.: Something’s brewing! Early prediction of controversy-causing posts from discussion features. In: arXiv preprint arXiv:1904.07372 (2019)
Rajadesingan, A., Resnick, P., Budak, C.: Quick, community-specific learning: How distinctive toxicity norms are maintained in political subreddits. In: Proceedings of the International AAAI Conference on Web and Social Media, Vol. 14, pp. 557-568 (2020)
Zhang, J., Danescu-Niculescu-Mizil, C., Sauper, C., Taylor, S.J.: Characterizing online public discussions through patterns of participant interactions. In: Proceedings of the ACM on Human-Computer Interaction, 2(CSCW), pp. 1-27 (2018)
Acknowledgement
This research is funded in part by the U.S. National Science Foundation (OIA-1946391, OIA-1920920, IIS-1636933, ACI-1429160, and IIS-1110868), U.S. Office of the Under Secretary of Defense for Research and Engineering (FA9550-22-1-0332), U.S. Office of Naval Research (N00014-10-1-0091, N00014-14-1-0489, N00014-15-P-1187, N00014-16-1-2016, N00014-16-1-2412, N00014-17-1-2675, N00014-17-1-2605, N68335-19-C-0359, N00014-19-1-2336, N68335-20-C-0540, N00014-21-1-2121, N00014-21-1-2765, N00014-22-1-2318), U.S. Air Force Research Laboratory, U.S. Army Research Office (W911NF-20-1-0262, W911NF-16-1-0189, W911NF-23-1-0011), U.S. Defense Advanced Research Projects Agency (W31P4Q-17-C-0059), Arkansas Research Alliance, the Jerry L. Maulden/Entergy Endowment at the University of Arkansas at Little Rock, and the Australian Department of Defense Strategic Policy Grants Program (SPGP) (award number: 2020-106-094). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding organizations. The researchers gratefully acknowledge the support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yousefi, N., Noor, N.B., Spann, B., Agarwal, N. (2024). Examining Toxicity’s Impact on Reddit Conversations. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-031-53503-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-53503-1_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53502-4
Online ISBN: 978-3-031-53503-1
eBook Packages: EngineeringEngineering (R0)