Multilingual Hate Speech Detection Using Semi-supervised Generative Adversarial Network | SpringerLink
Skip to main content

Multilingual Hate Speech Detection Using Semi-supervised Generative Adversarial Network

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1144))

Included in the following conference series:

  • 1041 Accesses

Abstract

Online communication has overcome linguistic and cultural barriers, enabling global connection through social media platforms. However, linguistic variety introduced more challenges in tasks such as the detection of hate speech content. Although multiple NLP solutions were proposed using advanced machine learning techniques, data annotation scarcity is still a serious problem urging the need for employing semi-supervised approaches. This paper proposes an innovative solution—a multilingual Semi-Supervised model based on Generative Adversarial Networks (GAN) and mBERT models, namely SS-GAN-mBERT. We managed to detect hate speech in Indo-European languages (in English, German, and Hindi) using only 20% labeled data from the HASOC2019 dataset. Our approach excelled in multilingual, zero-shot cross-lingual, and monolingual paradigms, achieving, on average, a 9.23% F1 score boost and 5.75% accuracy increase over baseline mBERT model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/google-research/bert/blob/master/multilingual.md.

  2. 2.

    https://hasocfire.github.io/hasoc/2019/.

  3. 3.

    https://github.com/google-research/bert/blob/master/multilingual.md.

  4. 4.

    https://pytorch.org/.

  5. 5.

    https://colab.research.google.com/signup.

References

  1. Social Media and Democracy: The State of the Field, Prospects for Reform. SSRC Anxieties of Democracy. Cambridge University Press (2020)

    Google Scholar 

  2. Fortuna, P., Nunes, S.: A survey on automatic detection of hate speech in text. ACM Comput. Surv. 51(4), 1–30 (2018)

    Article  Google Scholar 

  3. Pamungkas, E.W., Basile, V., Patti, V.: Towards multidomain and multilingual abusive language detection: a survey. Pers. Ubiquit. Comput. 27(1), 17–43 (2023)

    Article  Google Scholar 

  4. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, vol. 1, pp. 4171–4186 (2019)

    Google Scholar 

  5. Mozafari, M., Farahbakhsh, R., Crespi, N.: A BERT-based transfer learning approach for hate speech detection in online social media. In: Cherifi, H., Gaito, S., Mendes, J.F., Moro, E., Rocha, L.M. (eds.) COMPLEX NETWORKS 2019. SCI, vol. 881, pp. 928–940. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36687-2_77

    Chapter  Google Scholar 

  6. Mozafari, M., Farahbakhsh, R., Crespi, N.: Hate speech detection and racial bias mitigation in social media based on BERT model. PLoS ONE 15(8), e0237861 (2020)

    Article  Google Scholar 

  7. Mnassri, K., Rajapaksha, P., Farahbakhsh, R., Crespi, N.: BERT-based ensemble approaches for hate speech detection. In: IEEE GLOBECOM, pp. 4649–4654 (2022)

    Google Scholar 

  8. Mnassri, K., Rajapaksha, P., Farahbakhsh, R., Crespi, N.: Hate speech and offensive language detection using an emotion-aware shared encoder. arXiv preprint arXiv:2302.08777 (2023)

  9. Mozafari, M., Farahbakhsh, R., Crespi, N.: Cross-lingual few-shot hate speech and offensive language detection using meta learning. IEEE Access 10, 14880–14896 (2022)

    Article  Google Scholar 

  10. Kovács, G., Alonso, P., Saini, R.: Challenges of hate speech detection in social media: data scarcity, and leveraging external resources. SN Comput. Sci. 2, 1–15 (2021)

    Article  Google Scholar 

  11. Yin, W., Zubiaga, A.: Towards generalisable hate speech detection: a review on obstacles and solutions. PeerJ Comput. Sci. 7, e598 (2021)

    Article  Google Scholar 

  12. D’Sa, A.G., Illina, I., Fohr, D., Klakow, D., Ruiter, D.: Label propagation-based semi-supervised learning for hate speech classification. In: Proceedings of the First Workshop on Insights from Negative Results in NLP, Online, November 2020, pp. 54–59. Association for Computational Linguistics (2020)

    Google Scholar 

  13. Alsafari, S., Sadaoui, S.: Semi-supervised self-learning for Arabic hate speech detection. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 863–868 (2021)

    Google Scholar 

  14. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  15. Salimans, T., et al.: Improved techniques for training GANs. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates Inc. (2016)

    Google Scholar 

  16. Tanvir, R., et al.: A GAN-BERT based approach for Bengali text classification with a few labeled examples. In: 19th International Conference on Distributed Computing and Artificial Intelligence, pp. 20–30 (2023)

    Google Scholar 

  17. Cao, R., Lee, R.K.-W.: HateGAN: adversarial generative-based data augmentation for hate speech detection. In: Proceedings of the 28th International Conference on Computational Linguistics, Online, Barcelona, Spain, December 2020, pp. 6327–6338. International Committee on Computational Linguistics (2020)

    Google Scholar 

  18. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets with policy gradient. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 2852–2858 (2017)

    Google Scholar 

  19. Croce, D., Castellucci, G., Basili, R.: GAN-BERT: generative adversarial learning for robust text classification with a bunch of labeled examples. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, July 2020, pp. 2114–2119 (2020)

    Google Scholar 

  20. Jiang, S., Cormier, S., Angarita, R., Rousseaux, F.: Improving text mining in plant health domain with GAN and/or pre-trained language model. Fronti. Artif. Intell. 6, 1072329 (2023)

    Article  Google Scholar 

  21. Jain, P.K., Quamer, W., Pamula, R.: Consumer sentiment analysis with aspect fusion and GAN-BERT aided adversarial learning. Exp. Syst. 40(4), e13247 (2023)

    Article  Google Scholar 

  22. Ta, H.T., Rahman, A.B.S., Najjar, L., Gelbukh, A.: GAN-BERT: adversarial learning for detection of aggressive and violent incidents from social media. In: Proceedings of IberLEF, CEUR-WS (2022)

    Google Scholar 

  23. Santos, R.B., Matos, B.C., Carvalho, P., Batista, F., Ribeiro, R.: Semi-supervised annotation of Portuguese hate speech across social media domains. In: Cordeiro, J., Pereira, M.J., Rodrigues, N.F., Pais, S. (eds.) 11th SLATE Conference, vol. 104, pp. 11:1–11:14 (2022)

    Google Scholar 

  24. Mandl, T., et al.: Overview of the HASOC track at FIRE 2019: hate speech and offensive content identification in Indo-European languages. In: Proceedings of the 11th Annual Meeting of the Forum for Information Retrieval Evaluation, pp. 14–17. Association for Computing Machinery (2019)

    Google Scholar 

  25. de Rosa, G.H., Papa, J.P.: A survey on text generation using generative adversarial networks. Pattern Recogn. 119(C), 108098 (2021)

    Article  Google Scholar 

  26. Silva, K., Can, B., Sarwar, R., Blain, F., Mitkov, R.: Text data augmentation using generative adversarial networks - a systematic review. J. Comput. Appl. Linguist. 1, 6–38 (2023)

    Google Scholar 

  27. Yu, Z.Z., Jaw, L.J., Jiang, W.Q., Hui, Z.: Fine-tuning language models with generative adversarial feedback (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khouloud Mnassri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mnassri, K., Farahbakhsh, R., Crespi, N. (2024). Multilingual Hate Speech Detection Using Semi-supervised Generative Adversarial Network. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-031-53503-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53503-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53502-4

  • Online ISBN: 978-3-031-53503-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics