Time-Dynamics of (Mis)Information Spread on Social Networks: A COVID-19 Case Study | SpringerLink
Skip to main content

Time-Dynamics of (Mis)Information Spread on Social Networks: A COVID-19 Case Study

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1144))

Included in the following conference series:

  • 1043 Accesses

Abstract

In our study, we investigate the persistence of misinformation in social networks, focusing on the longevity of discussions related to misinformation. We employ the CoVaxxy dataset, which encompasses COVID-19 vaccine-related tweets, and classify tweets as reliable/unreliable based on non-credible sources/accounts. We construct separate networks for retweets, replies, and mentions, applying centrality metrics (degree, betweenness, closeness) to assess tweet significance. Our objective is to determine how long tweets associated with non-credible sources remain active. Our findings reveal a noteworthy correlation: tweets with longer lifespans tend to be influential nodes within the network, while shorter-lived tweets have less impact. y shedding light on the longevity of misinformation within social networks, our research contributes to a better understanding of misinformation propagation dynamics. These insights can inform strategies to combat misinformation during public health crises like the COVID-19 pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://iffy.news/.

References

  1. Ahvanooey, M.T., Zhu, M.X., Mazurczyk, W., Choo, K.K.R., Conti, M., Zhang, J.: Misinformation detection on social media: challenges and the road ahead. IT Professional 24(1), 34–40 (2022). https://doi.org/10.1109/MITP.2021.3120876

    Article  Google Scholar 

  2. De Meo, P., Ferrara, E., Fiumara, G., Provetti, A.: Generalized louvain method for community detection in large networks. In: 2011 11th International Conference on Intelligent Systems Design and Applications, pp. 88–93 (2011). https://doi.org/10.1109/ISDA.2011.6121636

  3. DeVerna, M.R., Aiyappa, R., Pacheco, D., Bryden, J., Menczer, F.: Identification and characterization of misinformation superspreaders on social media. CoRR abs/2207.09524 (2022). https://doi.org/10.48550/arXiv.2207.09524

  4. DeVerna, M.R., et al.: Covaxxy: a collection of english-language twitter posts about covid-19 vaccines. In:Proceedings of the International AAAI Conference on Web and Social Media 15(1), 992–999 (2021). https://ojs.aaai.org/index.php/ICWSM/article/view/18122

  5. Duzen, Z.: covaxxy-data-mining. https://github.com/duzenz/covaxxy-data-mining (2023). Accessed June 9 2023

  6. Duzen, Z., Riveni, M., Aktas, M.: Processes for misinformation spread-analysis on social networks: a covid-19 case study. IEEE CPS Xplore (2023). Accepted for publication

    Google Scholar 

  7. Lazer, D.M.J., et al.: The science of fake news. Science 359(6380), 1094–1096 (2018). https://doi.org/10.1126/science.aao2998.https://www.science.org/doi/abs/10.1126/science.aao2998

  8. Massey, P.M., Kearney, M.D., Hauer, M.K., Selvan, P., Koku, E., Leader, A.E.: Dimensions of misinformation about the hpv vaccine on instagram: Content and network analysis of social media characteristics. J. Med. Internet Res. 22(12), e21,451 (2020). https://doi.org/10.2196/21451., https://www.jmir.org/2020/12/e21451

  9. Nakov, P., et al.: The clef-2021 checkthat! lab on detecting check-worthy claims, previously fact-checked claims, and fake news. In: Hiemstra, D., Moens, M.F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) Advances in Information Retrieval, pp. 639–649. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  10. Pastor-Escuredo, D., Tarazona, C.: Characterizing information leaders in twitter during COVID-19 crisis. CoRR abs/2005.07266 (2020)

    Google Scholar 

  11. Petratos, P.N.: Misinformation, disinformation, and fake news: Cyber risks to business. Business Horizons 64(6), 763–774 (2021). https://doi.org/10.1016/j.bushor.2021.07.012. https://www.sciencedirect.com/science/article/pii/S000768132100135X. CIBER SPECIAL ISSUE: CYBERSECURITY IN CRISIS

  12. Ratkiewicz, J., Conover, M., Meiss, M., Goncalves, B., Flammini, A., Menczer, F.: Detecting and tracking political abuse in social media. Proc.e Int. AAAI Conf. Web Social Media 5(1), 297–304 (2021). https://doi.org/10.1609/icwsm.v5i1.14127.https://ojs.aaai.org/index.php/ICWSM/article/view/14127

  13. Roitero, K., et al.: Can the crowd judge truthfulness? a longitudinal study on recent misinformation about COVID-19. Pers. Ubiquitous Comput. 27(1), 59–89 (2023). https://doi.org/10.1007/s00779-021-01604-6

    Article  Google Scholar 

  14. Shrestha, A., Spezzano, F.: Online misinformation: from the deceiver to the victim. In: F. Spezzano, W. Chen, X. Xiao (eds.) ASONAM ’19: International Conference on Advances in Social Networks Analysis and Mining, Vancouver, British Columbia, Canada, 27-30 August, 2019, pp. 847–850. ACM (2019). https://doi.org/10.1145/3341161.3343536

  15. Tambuscio, M., Ruffo, G., Flammini, A., Menczer, F.: Fact-checking effect on viral hoaxes: a model of misinformation spread in social networks. In: A. Gangemi, S. Leonardi, A. Panconesi (eds.) Proceedings of the 24th International Conference on World Wide Web Companion, WWW 2015, Florence, Italy, May 18-22, 2015 - Companion Volume, pp. 977–982. ACM (2015). https://doi.org/10.1145/2740908.2742572

  16. Vo, N., Lee, K.: Learning from fact-checkers: analysis and generation of fact-checking language. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’19, p. 335–344. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3331184.3331248

  17. Vogel, I., Meghana, M.: Detecting fake news spreaders on twitter from a multilingual perspective. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 599–606. IEEE (2020)

    Google Scholar 

  18. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018). 10.1126/science.aap9559. https://www.science.org/doi/abs/10.1126/science.aap9559

  19. Zafarani, R., Zhou, X., Shu, K., Liu, H.: Fake news research: Theories, detection strategies, and open problems. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19, pp. 3207–3208. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3292500.3332287

  20. Zenodo: Covaxxy tweet ids data set. https://zenodo.org/record/5885700. Accessed 10 Jan 2022

  21. Zhang, J., Luo, Y.: Degree centrality, betweenness centrality, and closeness centrality in social network. In: Proceedings of the 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017), pp. 300–303. Atlantis Press (2017/03). https://doi.org/10.2991/msam-17.2017.68.https://doi.org/10.2991/msam-17.2017.68

  22. Zhou, X., Jain, A., Phoha, V.V., Zafarani, R.: Fake news early detection: a theory-driven model. Digital Threats 1(2) (2020). https://doi.org/10.1145/3377478

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafer Duzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duzen, Z., Riveni, M., Aktas, M.S. (2024). Time-Dynamics of (Mis)Information Spread on Social Networks: A COVID-19 Case Study. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-031-53503-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53503-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53502-4

  • Online ISBN: 978-3-031-53503-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics