Interpretable Cross-Platform Coordination Detection on Social Networks | SpringerLink
Skip to main content

Interpretable Cross-Platform Coordination Detection on Social Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1144))

Included in the following conference series:

  • 1070 Accesses

Abstract

Numerous disinformation campaigns are operating on social networks to influence public opinion. Detecting these campaigns primarily involves identifying coordinated communities. As disinformation campaigns can take place on several social networks at the same time, the detection must be cross-platform to get a proper picture of it. To encode the different types of coordination, a multi-layer network is built. We propose a scalable coordination detection algorithm, adapted from the Louvain algorithm and the Iterative Probabilistic Voting Consensus algorithm. This algorithm is applied to the previously built multi-layer network. Users from different social networks are then embedded in a common space to link communities with similar interests. This paper introduces an interpretable and modular framework used on three datasets to prove its effectiveness for coordination detection method and to illustrate it with real examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It should be noted that once communities have been matched, OSNs communities structures can be studied in detail for other purposes.

References

  1. Coordinated inauthentic behavior explained. https://about.fb.com/news/2018/12/inside-feed-coordinated-inauthentic-behavior/

  2. Doppelganger - media clones serving russian propaganda. https://www.disinfo.eu/doppelganger/

  3. Raising online defenses through transparency and collaboration. https://about.fb.com/news/2023/08/raising-online-defenses/

  4. Alimadadi, F., Khadangi, E., Bagheri, A.: Community detection in facebook activity networks and presenting a new multilayer label propagation algorithm for community detection 33(10), 089 (1950). https://doi.org/10.1142/S0217979219500899

  5. Baumgartner, J., Zannettou, S., Squire, M., Blackburn, J.: The pushshift telegram dataset

    Google Scholar 

  6. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation 15(6), 1373–1396. https://doi.org/10.1162/089976603321780317

  7. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks 2008(10), P10,008. https://doi.org/10.1088/1742-5468/2008/10/P10008

  8. Bovet, A., Makse, H.A.: Influence of fake news in twitter during the 2016 US presidential election 10(1), 7. https://doi.org/10.1038/s41467-018-07761-2

  9. Calatayud, J., Bernardo-Madrid, R., Neuman, M., Rojas, A., Rosvall, M.: Exploring the solution landscape enables more reliable network community detection 100(5), 052308. https://doi.org/10.1103/PhysRevE.100.052308

  10. Chacón, J.E., Rastrojo, A.I.: Minimum adjusted rand index for two clusterings of a given size 17(1), 125–133. https://doi.org/10.1007/s11634-022-00491-w

  11. De Domenico, M.: More is different in real-world multilayer networks. https://doi.org/10.1038/s41567-023-02132-1

  12. Enryu: Fun with large-scale tweet analysis. https://medium.com/@enryu9000/fun-with-large-scale-tweet-analysis-783c96b45df4

  13. Gao, S., Zhang, Z., Su, S., Yu, P.S.: REBORN: transfer learning based social network alignment 589, 265–282. https://doi.org/10.1016/j.ins.2021.12.081

  14. Graham, T., Bruns, A., Zhu, G., Campbell, R.: Like a virus: the coordinated spread of coronavirus disinformation

    Google Scholar 

  15. Greene, D., Cunningham, P.: Producing a unified graph representation from multiple social network views

    Google Scholar 

  16. Huang, X., Chen, D., Ren, T., Wang, D.: A survey of community detection methods in multilayer networks 35(1), 1–45. https://doi.org/10.1007/s10618-020-00716-6

  17. Jakesch, M., Garimella, K., Eckles, D., Naaman, M.: Trend alert: How a cross-platform organization manipulated twitter trends in the indian general election 5, 1–19. https://doi.org/10.1145/3479523

  18. Kudugunta, S., Ferrara, E.: Deep neural networks for bot detection 467, 312–322. https://doi.org/10.1016/j.ins.2018.08.019

  19. Lei, T., Ji, L., Wang, G., Liu, S., Wu, L., Pan, F.: Transformer-based user alignment model across social networks 12(7), 1686. https://doi.org/10.3390/electronics12071686

  20. Liu, L., Zhang, Y., Fu, S., Zhong, F., Hu, J., Zhang, P.: ABNE: an attention-based network embedding for user alignment across social networks 7, 23,595–23,605. https://doi.org/10.1109/ACCESS.2019.2900095

  21. Malhotra, A., Totti, L., Meira Jr., W., Kumaraguru, P., Almeida, V.: Studying user footprints in different online social networks. https://doi.org/10.48550/arXiv.1301.6870

  22. Micallef, N., Sandoval-Castañeda, M., Cohen, A., Ahamad, M., Kumar, S., Memon, N.: Cross-platform multimodal misinformation: Taxonomy, characteristics and detection for textual posts and videos 16, 651–662. https://doi.org/10.1609/icwsm.v16i1.19323

  23. Moore, M.: Fake accounts on social media, epistemic uncertainty and the need for an independent auditing of accounts. https://doi.org/10.14763/2023.1.1680

  24. Morstatter, F., Shao, Y., Galstyan, A., Karunasekera, S.: From Alt-Right to Alt-Rechts: Twitter analysis of the 2017 german federal election. In: Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW ’18, pp. 621–628. ACM Press. https://doi.org/10.1145/3184558.3188733

  25. Murero, M.: Coordinated inauthentic behavior: An innovative manipulation tactic to amplify COVID-19 anti-vaccine communication outreach via social media 8, 1141416. https://doi.org/10.3389/fsoc.2023.1141416

  26. Nguyen, N., Caruana, R.: Consensus clusterings. In: Seventh IEEE International Conference on Data Mining (ICDM 2007), pp. 607–612. https://doi.org/10.1109/ICDM.2007.73. ISSN: 2374-8486

  27. Nori, H., Jenkins, S., Koch, P., Caruana, R.: InterpretML: A unified framework for machine learning interpretability

    Google Scholar 

  28. Pierri, F., Artoni, A., Ceri, S.: HoaxItaly: a collection of italian disinformation and fact-checking stories shared on twitter in 2019. https://doi.org/10.48550/arXiv.2001.10926

  29. Pierri, F., Piccardi, C., Ceri, S.: A multi-layer approach to disinformation detection in US and italian news spreading on twitter 9(1), 1–17. https://doi.org/10.1140/epjds/s13688-020-00253-8

  30. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. https://doi.org/10.48550/arXiv.1908.10084

  31. Satuluri, V., et al.: SimClusters: Community-based representations for heterogeneous recommendations at twitter. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’20, pp. 3183–3193. Association for Computing Machinery. https://doi.org/10.1145/3394486.3403370

  32. Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem 31(1), 1–10. https://doi.org/10.1007/BF02289451

  33. Sharma, K., Zhang, Y., Ferrara, E., Liu, Y.: Identifying coordinated accounts on social media through hidden influence and group behaviours. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1441–1451. ACM. https://doi.org/10.1145/3447548.3467391

  34. Vargas, L., Emami, P., Traynor, P.: On the detection of disinformation campaign activity with network analysis. https://doi.org/10.48550/arXiv.2005.13466

  35. Weber, D., Neumann, F.: Amplifying influence through coordinated behaviour in social networks 11(1), 111. https://doi.org/10.1007/s13278-021-00815-2

  36. Wilson, T., Starbird, K.: Cross-platform disinformation campaigns: Lessons learned and next steps 1(1). https://doi.org/10.37016/mr-2020-002

  37. Zhang, C., Gupta, A., Kauten, C., Deokar, A.V., Qin, X.: Detecting fake news for reducing misinformation risks using analytics approaches 279(3), 1036–1052. https://doi.org/10.1016/j.ejor.2019.06.022

  38. Zhang, Y., Sharma, K., Liu, Y.: Capturing cross-platform interaction for identifying coordinated accounts of misinformation campaigns. In: Kamps, J., et al. (eds.) Advances in Information Retrieval, Lecture Notes in Computer Science, pp. 694–702. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-28238-6_61

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Auriant Emeric .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Emeric, A., Victor, C. (2024). Interpretable Cross-Platform Coordination Detection on Social Networks. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-031-53503-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53503-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53502-4

  • Online ISBN: 978-3-031-53503-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics