Abstract
DiffusionDet is the first neural network model to apply the diffusion model to object detection, which is a new object detection paradigm that achieves good results compared to other mature object detection models. However, the diffusion model is an iterative model by nature, which requires setting numerous sampling steps to get good results. DiffusionDet has difficulty obtaining stable samples with fewer sampling steps, and calling the detection head once per iteration will cause the inference time to keep increasing. To alleviate this problem, the DPM-Det algorithm is proposed, which only changes the sampling process from noise boxes to bounding boxes in progressive refinement during inference, while keeping the structure of the DiffusionDet model unchanged. It replaces the original denoising diffusion implicit models in DiffusionDet by introducing DPM-Solver++. On the MS-COCO dataset, with ResNet-50 with FPN as the backbone and the training and evaluation boxes fixed at 500, DPM-Det achieved an AP of 47.0 with 5 steps and an AP of 47.3 with 8 steps. Compared with DiffusionDet, DPM-Det has a certain degree of improvement in both detection accuracy and speed, which can achieve a better balance of accuracy and speed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)
Chen, S., Sun, P., Song, Y., Luo, P.: DiffusionDet: diffusion model for object detection. arXiv preprint arXiv:2211.09788 (2022)
Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: DPM-Solver++: fast solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095 (2022)
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Chen, Y., Yuan, X., Wu, R., Wang, J., Hou, Q., Cheng, M.M.: YOLO-MS: rethinking multi-scale representation learning for real-time object detection. arXiv preprint arXiv:2308.05480 (2023)
Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 840–849 (2019). https://doi.org/10.1109/CVPR.2019.00093
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Roh, B., Shin, J., Shin, W., Kim, S.: Sparse DETR: efficient end-to-end object detection with learnable sparsity. arXiv preprint arXiv:2111.14330 (2021)
Zhou, X., Hou, J., Yao, T., Liang, D., Liu, Z., Zou, Z., et al.: Diffusion-based 3D object detection with random boxes. arXiv preprint arXiv:2309.02049 (2023)
Cao, H., Tan, C., Gao, Z., Chen, G., Heng, P.A., Li, S.Z.: A survey on generative diffusion model. arXiv preprint arXiv:2111.14330 (2022)
Bao, F., Li, C., Zhu, J., Zhang, B.: Analytic-DPM: an analytic estimate of the optimal reverse variance in diffusion probabilistic models.arXiv preprint arXiv:2201.06503 (2022)
Bao, F., Li, C., Sun, J., Zhu, J., Zhang, B.: Estimating the optimal covariance with imperfect mean in diffusion probabilistic models.arXiv preprint arXiv:2206.07309 (2022)
Kong, Z., Ping, W.: On fast sampling of diffusion probabilistic models. arXiv preprint arXiv:2106.00132 (2021)
Jolicoeur-Martineau, A., Li, K., Piché-Taillefer, R., Kachman, T., Mitliagkas, I.: Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080 (2021)
Watson, D., Chan, W., Ho, J., Norouzi, M.: Learning fast samplers for diffusion models by differentiating through sample quality. In: International Conference on Learning Representations (2021)
Kim, D., Na, B., Kwon, S.J., Lee, D., Kang, W., Moon, I.C.: Maximum likelihood training of implicit nonlinear diffusion model. Adv. Neural Inf. Process. Syst. 35, 32270–32284 (2022). https://doi.org/10.48550/arXiv.2205.13699
Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)
Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.com/facebookresearch/detectron2 (2019)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017). https://doi.org/10.1109/CVPR.2017.106
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009). https://doi.org/10.1109/CVPR.2009.5206848
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)
Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021). https://doi.org/10.1109/CVPR46437.2021.01422
Zhao, J., Sun, L., Li, Q.: RecursiveDet: end-to-end region-based recursive object detection. arXiv preprint arXiv:2307.13619 (2023)
Li, S., He, C., Li, R., Zhang, L.: A dual weighting label assignment scheme for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9387–9396 (2022). https://doi.org/10.1109/CVPR52688.2022.00917
Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: VarifocalNet: an IoU-aware dense object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8514–8523 (2021). https://doi.org/10.1109/CVPR46437.2021.00841
Gao, Z., Wang, L., Wu, G.: Mutual supervision for dense object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3641–3650 (2021). https://doi.org/10.1109/ICCV48922.2021.00362
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, J., Li, X., Sun, L., Bai, C. (2024). DPM-Det: Diffusion Model Object Detection Based on DPM-Solver++ Guided Sampling. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-53308-2_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53307-5
Online ISBN: 978-3-031-53308-2
eBook Packages: Computer ScienceComputer Science (R0)