DPM-Det: Diffusion Model Object Detection Based on DPM-Solver++ Guided Sampling | SpringerLink
Skip to main content

DPM-Det: Diffusion Model Object Detection Based on DPM-Solver++ Guided Sampling

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14555))

Included in the following conference series:

Abstract

DiffusionDet is the first neural network model to apply the diffusion model to object detection, which is a new object detection paradigm that achieves good results compared to other mature object detection models. However, the diffusion model is an iterative model by nature, which requires setting numerous sampling steps to get good results. DiffusionDet has difficulty obtaining stable samples with fewer sampling steps, and calling the detection head once per iteration will cause the inference time to keep increasing. To alleviate this problem, the DPM-Det algorithm is proposed, which only changes the sampling process from noise boxes to bounding boxes in progressive refinement during inference, while keeping the structure of the DiffusionDet model unchanged. It replaces the original denoising diffusion implicit models in DiffusionDet by introducing DPM-Solver++. On the MS-COCO dataset, with ResNet-50 with FPN as the backbone and the training and evaluation boxes fixed at 500, DPM-Det achieved an AP of 47.0 with 5 steps and an AP of 47.3 with 8 steps. Compared with DiffusionDet, DPM-Det has a certain degree of improvement in both detection accuracy and speed, which can achieve a better balance of accuracy and speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  2. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  3. Chen, S., Sun, P., Song, Y., Luo, P.: DiffusionDet: diffusion model for object detection. arXiv preprint arXiv:2211.09788 (2022)

  4. Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: DPM-Solver++: fast solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095 (2022)

  5. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  6. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169

  7. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  8. Chen, Y., Yuan, X., Wu, R., Wang, J., Hou, Q., Cheng, M.M.: YOLO-MS: rethinking multi-scale representation learning for real-time object detection. arXiv preprint arXiv:2308.05480 (2023)

  9. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 840–849 (2019). https://doi.org/10.1109/CVPR.2019.00093

  10. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  11. Roh, B., Shin, J., Shin, W., Kim, S.: Sparse DETR: efficient end-to-end object detection with learnable sparsity. arXiv preprint arXiv:2111.14330 (2021)

  12. Zhou, X., Hou, J., Yao, T., Liang, D., Liu, Z., Zou, Z., et al.: Diffusion-based 3D object detection with random boxes. arXiv preprint arXiv:2309.02049 (2023)

  13. Cao, H., Tan, C., Gao, Z., Chen, G., Heng, P.A., Li, S.Z.: A survey on generative diffusion model. arXiv preprint arXiv:2111.14330 (2022)

  14. Bao, F., Li, C., Zhu, J., Zhang, B.: Analytic-DPM: an analytic estimate of the optimal reverse variance in diffusion probabilistic models.arXiv preprint arXiv:2201.06503 (2022)

  15. Bao, F., Li, C., Sun, J., Zhu, J., Zhang, B.: Estimating the optimal covariance with imperfect mean in diffusion probabilistic models.arXiv preprint arXiv:2206.07309 (2022)

  16. Kong, Z., Ping, W.: On fast sampling of diffusion probabilistic models. arXiv preprint arXiv:2106.00132 (2021)

  17. Jolicoeur-Martineau, A., Li, K., Piché-Taillefer, R., Kachman, T., Mitliagkas, I.: Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080 (2021)

  18. Watson, D., Chan, W., Ho, J., Norouzi, M.: Learning fast samplers for diffusion models by differentiating through sample quality. In: International Conference on Learning Representations (2021)

    Google Scholar 

  19. Kim, D., Na, B., Kwon, S.J., Lee, D., Kang, W., Moon, I.C.: Maximum likelihood training of implicit nonlinear diffusion model. Adv. Neural Inf. Process. Syst. 35, 32270–32284 (2022). https://doi.org/10.48550/arXiv.2205.13699

  20. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  21. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.com/facebookresearch/detectron2 (2019)

  22. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  24. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017). https://doi.org/10.1109/CVPR.2017.106

  25. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009). https://doi.org/10.1109/CVPR.2009.5206848

  26. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  27. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  28. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

  29. Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021). https://doi.org/10.1109/CVPR46437.2021.01422

  30. Zhao, J., Sun, L., Li, Q.: RecursiveDet: end-to-end region-based recursive object detection. arXiv preprint arXiv:2307.13619 (2023)

  31. Li, S., He, C., Li, R., Zhang, L.: A dual weighting label assignment scheme for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9387–9396 (2022). https://doi.org/10.1109/CVPR52688.2022.00917

  32. Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: VarifocalNet: an IoU-aware dense object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8514–8523 (2021). https://doi.org/10.1109/CVPR46437.2021.00841

  33. Gao, Z., Wang, L., Wu, G.: Mutual supervision for dense object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3641–3650 (2021). https://doi.org/10.1109/ICCV48922.2021.00362

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjie Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Li, X., Sun, L., Bai, C. (2024). DPM-Det: Diffusion Model Object Detection Based on DPM-Solver++ Guided Sampling. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53308-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53307-5

  • Online ISBN: 978-3-031-53308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics