Learning by Intervention in Simple Causal Domains | SpringerLink
Skip to main content

Learning by Intervention in Simple Causal Domains

  • Conference paper
  • First Online:
Dynamic Logic. New Trends and Applications (DaLí 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14401))

Included in the following conference series:

  • 189 Accesses

Abstract

We propose a framework for learning dependencies between variables in an environment with causal relations. We assume that the environment is fully observable and that the underlying causal structure is of a simple nature. We adapt the frameworks of the (epistemic) causal models from [4, 17], and propose a model inspired by action learning [6, 7]. We present two learning methods, using formal and algorithmic approaches. Our learning agents infer dependencies (atomic formulas of Dependence Logic) from observations of interventions on valuations (propositional states), and by doing so efficiently, they obtain insights into how to manipulate their surroundings to achieve goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here ‘\(\cdot \)’ stands for concatenation of sequences.

  2. 2.

    Note that the same result is obtained by the learner for any sound and complete stream for the causal frame of this particular domain.

References

  1. Baltag, A., van Benthem, J.: A simple logic of functional dependence. J. Philos. Log. 50(5), 939–1005 (2021). https://doi.org/10.1007/s10992-020-09588-z

    Article  MathSciNet  Google Scholar 

  2. Baltag, A., Gierasimczuk, N., Özgün, A., Vargas Sandoval, A.L., Smets, S.: A dynamic logic for learning theory. J. Log. Algebraic Methods Program. 109, 100485 (2019). https://doi.org/10.1016/j.jlamp.2019.100485

    Article  MathSciNet  Google Scholar 

  3. Barbero, F., Sandu, G.: Team semantics for interventionist counterfactuals: observations vs. interventions. J. Philos. Log. 50(3), 471–521 (2021). https://doi.org/10.1007/s10992-020-09573-6

    Article  MathSciNet  Google Scholar 

  4. Barbero, F., Schulz, K., Smets, S., Velázquez-Quesada, F.R., Xie, K.: Thinking about causation: a causal language with epistemic operators. In: Martins, M.A., Sedlár, I. (eds.) DaLi 2020. LNCS, vol. 12569, pp. 17–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65840-3_2

    Chapter  Google Scholar 

  5. Bolander, T., Gierasimczuk, N., Liberman, A.: Learning to act and observe in partially observable domains. In: Bezhanishvili, N., Yang, F. (eds.) Outstanding Contributions to Logic: Dick de Jongh. Springer, Cham (2023). (in preparation). https://doi.org/10.48550/arXiv.2109.06076

  6. Bolander, T., Gierasimczuk, N.: Learning actions models: qualitative approach. In: van der Hoek, W., Holliday, W.H., Wang, W. (eds.) LORI 2015. LNCS, vol. 9394, pp. 40–52. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48561-3_4

    Chapter  Google Scholar 

  7. Bolander, T., Gierasimczuk, N.: Learning to act: qualitative learning of deterministic action models. J. Log. Comput. 28(2), 337–365 (2017). https://doi.org/10.1093/logcom/exx036

    Article  MathSciNet  Google Scholar 

  8. Dégremont, C., Gierasimczuk, N.: Finite identification from the viewpoint of epistemic update. Inf. Comput. 209(3), 383–396 (2011). https://doi.org/10.1016/j.ic.2010.08.002

    Article  MathSciNet  Google Scholar 

  9. Gierasimczuk, N.: Inductive inference and epistemic modal logic. In: Klin, B., Pimentel, E. (eds.) 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), vol. 252, pp. 2:1–2:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl (2023). https://doi.org/10.4230/LIPIcs.CSL.2023.2

  10. Gierasimczuk, N., Jonghde Jongh, D.: On the complexity of conclusive update. Comput. J. 56(3), 365–377 (2013). https://doi.org/10.1093/comjnl/bxs059

    Article  Google Scholar 

  11. Glymour, C., Zhang, K., Spirtes, P.: Review of causal discovery methods based on graphical models. Front. Genet. 10, 524 (2019). https://doi.org/10.3389/fgene.2019.00524

    Article  Google Scholar 

  12. Gold, M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967). https://doi.org/10.1016/S0019-9958(67)91165-5

    Article  MathSciNet  Google Scholar 

  13. Halpern, J.Y.: Actual Causality. The MIT Press, Cambridge (2016). https://doi.org/10.7551/mitpress/10809.001.0001

    Book  Google Scholar 

  14. Hintikka, J., Sandu, G.: Informational independence as a semantical phenomenon. In: Fenstad, J.E., Frolov, I.T., Hilpinen, R. (eds.) Logic, Methodology and Philosophy of Science VIII, Studies in Logic and the Foundations of Mathematics, vol. 126, pp. 571–589. Elsevier (1989). https://doi.org/10.1016/S0049-237X(08)70066-1

  15. McCormack, T., Bramley, N., Frosch, C., Patrick, F., Lagnado, D.: Children’s use of interventions to learn causal structure. J. Exp. Child Psychol. 141, 1–22 (2016). https://doi.org/10.1016/j.jecp.2015.06.017

    Article  Google Scholar 

  16. Muentener, P., Bonawitz, E.: The development of causal reasoning. In: Waldmann, M.R. (ed.) The Oxford Handbook of Causal Reasoning, pp. 677–698. Oxford University Press (2017). https://doi.org/10.1093/oxfordhb/9780199399550.001.0001

  17. Pearl, J.: Introduction to Probabilities, Graphs, and Causal Models, 2 edn., pp. 1–40. Cambridge University Press (2009). https://doi.org/10.1017/CBO9780511803161.003

  18. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect, 1st edn. Basic Books Inc., USA (2018). https://doi.org/10.1007/s00146-020-00971-7

  19. Peters, J.M., Janzing, D., Schölkopf, B.: Elements of Causal Inference: Foundations and Learning Algorithms: Foundations and Learning Algorithms. MIT Press, Cambridge (2017)

    Google Scholar 

  20. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic (London Mathematical Society Student Texts). Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511611193

    Book  Google Scholar 

  21. Von Wright, G.: On the logic and epistemology of the causal relation. In: Suppes, P., Henkin, L., Joja, A., Moisil, G.C. (eds.) Proceedings of the Fourth International Congress for Logic, Methodology and Philosophy of Science, Bucharest, 1971. Studies in Logic and the Foundations of Mathematics, vol. 74, pp. 293–312. Elsevier (1973). https://doi.org/10.1016/S0049-237X(09)70366-0

  22. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Log. 167(7), 557–589 (2016). https://doi.org/10.1016/j.apal.2016.03.003

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Gierasimczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thoft, K.B.P., Gierasimczuk, N. (2024). Learning by Intervention in Simple Causal Domains. In: Gierasimczuk, N., Velázquez-Quesada, F.R. (eds) Dynamic Logic. New Trends and Applications. DaLí 2023. Lecture Notes in Computer Science, vol 14401. Springer, Cham. https://doi.org/10.1007/978-3-031-51777-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51777-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51776-1

  • Online ISBN: 978-3-031-51777-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics