Social Exploration in Robot Swarms | SpringerLink
Skip to main content

Social Exploration in Robot Swarms

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems (DARS 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 28))

Included in the following conference series:

Abstract

Robot swarms have shown great potential for exploration of unknown environments, utilizing simple robots with local interaction and limited sensing. Despite this, complex indoor environments can create issues for reactive swarm behaviours where specific paths need to be travelled and bottlenecks are present. In this paper we present our social exploration algorithm which allows the swarm to decide between different options of swarm behaviours to search randomly generated environments. Using a “happiness” measure, agents can reason over the performance of different swarm behaviours, aiming to promote free movement. Agents collaborate to share opinions of different behaviours, forming teams which are capable of adapting their exploration to any given environment. We demonstrate the ability of the swarm to explore complex environments with minimal information and highlight increased performance in relation to other swarm behaviours over 250 randomly generated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meng, X.B., Gao, X.Z., Lu, L., Liu, Y., Zhang, H.: A new bio-inspired optimisation algorithm: bird swarm Algorithm. J. Exp. Theor. Artif. Intell. 28(4), 673–687 (2016)

    Article  Google Scholar 

  2. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  3. Dorigo, M., Theraulaz, G., Trianni, V.: Swarm robotics: past, present, and future. Proc. IEEE 109(7), 1152–1165 (2021)

    Google Scholar 

  4. Zhu, B., Xie, L., Han, D., Meng, X., Teo, R.: A survey on recent progress in control of swarm systems. Sci. China Inf. Sci. 60(7), 1–24 (2017)

    Article  MathSciNet  Google Scholar 

  5. Hanay, Y.S., Ilter, M.: Aggregation , Foraging , and Formation Control of Swarms with Non-Holonomic Agents Using Potential Functions and Sliding Mode Techniques, vol. 15, no. 2, pp. 149–168 (2007)

    Google Scholar 

  6. Cardona, G.A., Calderon, J.M.: Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations. Appl. Sci. (Switzerland) 9(8) (2019)

    Google Scholar 

  7. McLurkin, J., Smith, J.: Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. Distrib. Auton. Robot. Syst. 6, 399–408 (2008)

    Google Scholar 

  8. Novischi, D.M., Florea, A.M.: Decentralized swarm aggregation and dispersion with inter-member collision avoidance for non-holonomic multi-robot systems. In: Proceedings - 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing, ICCP 2018, pp. 89–95 (2018)

    Google Scholar 

  9. Bayert, J., Khorbotly, S.: Robotic swarm dispersion using gradient descent algorithm. In: IEEE International Symposium on Robotic and Sensors Environments, ROSE 2019 - Proceedings (2019)

    Google Scholar 

  10. Ludwig, L., Gini, M.: Robotic swarm dispersion using wireless intensity signals. Distrib. Auton. Robot. Syst. 7, 135–144 (2006)

    Google Scholar 

  11. Kegeleirs, M., Garzón Ramos, D., Birattari, M.: Random walk exploration for swarm mapping. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds.) TAROS 2019. LNCS (LNAI), vol. 11650, pp. 211–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25332-5_19

    Chapter  Google Scholar 

  12. Pang, B., Song, Y., Zhang, C., Wang, H., Yang, R.: A swarm robotic exploration strategy based on an improved random walk method. J. Robot. 2019(i) (2019)

    Google Scholar 

  13. Lu, Q., Fricke, G.M., Ericksen, J.C., Moses, M.E.: Swarm foraging review: closing the gap between proof and practice. Curr. Robot. Rep. 1(4), 215–225 (2020)

    Article  Google Scholar 

  14. Song, Y., Fang, X., Liu, B., Li, C., Li, Y., Yang, S.X.: A novel foraging algorithm for swarm robotics based on virtual pheromones and neural network. Appl. Soft Comput. J. 90, 106156 (2020)

    Article  Google Scholar 

  15. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_6

    Chapter  Google Scholar 

  16. Mallon, E.B., Pratt, S.C., Franks, N.R.: Individual and collective decision-making during nest site selection by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 50(4), 352–359 (2001)

    Article  Google Scholar 

  17. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4(MAR) (2017)

    Google Scholar 

  18. Valentini, G., Hamann, H., Dorigo, M.: Efficient decision-making in a self-organizing swarm of simple robots: on the speed versus accuracy Trade-Off G. Valentini, G., Hamann, H., Dorigo, M. Technical Report No ., no. September, pp. 1305–1314 (2014)

    Google Scholar 

  19. Talamali, M.S., Saha, A., Marshall, J.A., Reina, A.: When less is more: robot swarms adapt better to changes with constrained communication. Sci. Robot. 6(56) (2021)

    Google Scholar 

  20. Scheidler, A., Brutschy, A., Ferrante, E., Dorigo, M.: The k-unanimity rule for self-organized decision-making in swarms of robots. IEEE Trans. Cybern. 46(5), 1175–1188 (2016)

    Article  Google Scholar 

  21. Zhao, S.Z., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: 2008 IEEE Congress on Evolutionary Computation. CEC 2008, pp. 3845–3852 (2008)

    Google Scholar 

  22. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  23. Tian, D., Shi, Z.: MPSO: modified particle swarm optimization and its applications. Swarm Evol. Comput. 41(August 2017), 49–68 (2018)

    Google Scholar 

  24. Althamary, I., Huang, C.W., Lin, P.: A survey on multi-agent reinforcement learning methods for vehicular networks. In: 2019 15th International Wireless Communications and Mobile Computing Conference. IWCMC 2019, pp. 1154–1159 (2019)

    Google Scholar 

  25. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)

    Article  Google Scholar 

  26. Hogg, E., Hauert, S., Harvey, D., Richards, A.: Evolving behaviour trees for supervisory control of robot swarms. Artif. Life Robot. 25(4), 569–577 (2020)

    Article  Google Scholar 

  27. Cimino, M.G.C.A., Lazzeri, A., Vaglini, G.: Combining stigmergic and flocking behaviors to coordinate swarms of drones performing target search. In: 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–6, IEEE, July 2015

    Google Scholar 

  28. Hunt, E.R., Jones, S., Hauert, S.: Testing the limits of pheromone stigmergy in high-density robot swarms. R. Soc. Open Sci. 6(11) (2019)

    Google Scholar 

Download references

Acknowledgement

This work was funded and delivered in partnership between the Thales Group and the University of Bristol, and with the support of the UK Engineering and Physical Sciences Research Council Grant Award EP/R004757/1 entitled “Thales-Bristol Partnership in Hybrid Autonomous Systems Engineering (T-B PHASE)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliott Hogg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hogg, E., Harvey, D., Hauert, S., Richards, A. (2024). Social Exploration in Robot Swarms. In: Bourgeois, J., et al. Distributed Autonomous Robotic Systems. DARS 2022. Springer Proceedings in Advanced Robotics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-51497-5_6

Download citation

Publish with us

Policies and ethics