Abstract
The main worry with the rapid growth of technology has been cyber assaults. To counter these threats, sophisticated security systems have been-created, however none of them function completely error-free. This study uses face detection and recognition by Haar cascade classifier and LBPH for authentication initially, and then an intrusion detection system (IDS) using machine learning algorithm like FNT and KNN can identify fraudulent behavior. The typical accuracy for face detection is 90.2%. Whereas in recognition, it can be demonstrated that LBPH performs better in both still images and video than Eigen faces with respect to detection accuracy and execution speed. With a false positive rate of 1.6%, known and unknown intrusions accuracy detected by FNT is 97.2%. The detection rates for DOS, probe, U2R, and R2L in the known intrusion classifier by KNN are 98.7%, 97.4%, 97.8%, and 96.6%, respectively, whereas the false positive rates are 0.4%, 0.0.1.45%, 2.19%, and 1.97% respectively. The proposed known intrusion mechanism is demonstrated to outperform competing methods. The percentage of intrusion detection in the unknown intrusion detected by C-means clustering is 98.6%, and the rate of false positives is 1.32%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Z., Gao, F.: An embedded parallel face detection system based on multicore processor. In: IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 2684–2688 (2017). ISBN: 978-1-4673-8979-2
Ji, P., Kim, Y., Yang, Y., Kim, Y.S.: Face occlusion detection using skin color ratio and LBP features for intelligent video surveillance systems. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 253–259 (2016). ISBN: 978-8-3608-1090-3
Li, T., Hou, W., Lyu, F., Lei, Y., Xiao, C.: Face detection based-on depth information using HOG-LBP. In: 6th International Conference on Instrumentation and Measurement, Computer, Communication and Control, pp.779–784 (2016). ISBN: 978-1-5090-1195-7
Thiyagarajan, B.V., Mayur, A., Ravina, B., Akilesh, G.: LBP-Haar multi-feature pedestrian detection for AutoBraking and steering control system. In: International Conference on Computational Intelligence and Communication Networks (CICN), pp. 1527–1531 (2015). ISBN: 978-1-5090-0077-7
Faudzi, S.A.A.M., Yahya, N.: Evaluation of LBP – based face recognition techniques. In: International Conference on Intelligent and Advanced Systems (ICIAS), pp. 1–6 (2014). ISBN: 978-1-4799-4653-2
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)
Kumar, D.: Ddos attacks and their types. In: Network Security Attacks and Countermeasures, p. 197 (2016)
Bou-Harb, E., Debbabi, M., Assi, C.: Cyber scanning: a comprehensive survey. IEEE Commun. Surv. Tutor. 16(3), 1496–1519 (2014)
Manadhata, K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng. 37(3), 371–386 (2011)
Singh, S., Silakari, S.: A survey of cyberattack detection systems. Int. J. Comput. Sci. Netw. Secur. 9(5), 1–10 (2009)
Rostamipour, M., Sadeghiyan, B.: Network attack origin forensics with fuzzy logic. In: 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 67–72. IEEE (2015)
Edge, C., O’Donnell, D.: Malware security: combating viruses, worms, and root kits. In: Enterprise Mac Security, pp. 221–242. Apress, Berkeley (2016). https://doi.org/10.1007/978-1-4842-1712-2_8
Bahl, S., Sharma, S.K.: A minimal subset of features using correlation feature selection model for intrusion detection system. In: Satapathy, S.C., Raju, K.S., Mandal, J.K., Bhateja, V. (eds.) Proceedings of the Second International Conference on Computer and Communication Technologies. AISC, vol. 380, pp. 337–346. Springer, New Delhi (2016). https://doi.org/10.1007/978-81-322-2523-2_32
Surve, M., Joshi, P., Jamadar, S., Vharkate, M.: Automatic attendance system using face recognition technique. Int. J. Recent Technol. Eng. (IJRTE). IEEE 9(1) (2020)
Palanivel, N., Aswinkumar, S., Balaji, J.: Automated attendance systems using face recognition by K-means algorithms. In: International Conference on System Computation Automation and Networking. IEEE (2019)
Jenif, D., Souza, W.S., Jothi, S., Chandrasekar, A.: Automated attendance marking and management system by facial recognition using histogram. In: 5th International Conference on Advanced Computing & Communication Systems (ICACCS). IEEE (2019)
Kasiselvanathan, M., Kalaiselvi, A., Vimal, S.P., Sangeetha, V.: Smart attendance management system based on face recognition algorithm. Int. J. Pure Appl. Math. 120(5), 1377–1384 (2018)
Li, X.-Y.: Face recognition supported HOG and quick PCA rule. In: Euro China Conference on Intelligent Data Analysis and Applications (2017)
Kumar, V.D.A., Ashok Kumar, V.D., Malathi, S., Vengatesan, K., Ramakrishnan, M.: Facial recognition system for suspect identification using a surveillance camera. Pattern Recognit. Image Anal. 28, 410–420 (2018)
Kumar, V.D.A., Ramya, S., Divakar, H., Rajeswari, G.K.: A survey on face recognition in video surveillance. In: International Conference on ISMAC in Computational Vision and Bioengineering, pp. 699–708 (2018)
Venkatesan, R., Anni Princy, B., Kumar, V.D.A., Raghuraman, M., Gupta, M.K., Kumar, A.: Secure online payment through facial recognition and proxy detection with the help of Triple DES encryption. J. Discr. Math. Sci. Cryptogr. 24(8), 2195–2205 (2021)
Brahmi, H., Imen, B., Sadok, B.: OMC-IDS: at the cross-roads of OLAP mining and intrusion detection. In: Advances in Knowledge Discovery and Data Mining, pp. 13–24. Springer, New York (2012)
Aburomman, A.A., Reaz, M.B.I.: A novel svm-K-NN-pso ensemble method for intrusion detection system. Appl. Soft Comput. 38, 360–372 (2016)
Saxena, H., Richariya, V.: Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain. Int. J. Comput. Appl. 98(6), 25–29 (2014)
Das, I., Sarkar, A., Singh, S., Sawant, S.K.: Authentication and secure communication by Haar Cascade classifier, eigen face, LBP histogram and variable irreducible polynomial in (28) finite field. In: 2021 Devices for Integrated Circuit (DevIC), Kalyani, pp. 536–540 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Das, I., Das, P., Roychowdhury, R., Nath, S. (2024). Authentication and Access Control by Face Recognition and Intrusion Detection System. In: Dasgupta, K., Mukhopadhyay, S., Mandal, J.K., Dutta, P. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2023. Communications in Computer and Information Science, vol 1956. Springer, Cham. https://doi.org/10.1007/978-3-031-48879-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-48879-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48878-8
Online ISBN: 978-3-031-48879-5
eBook Packages: Computer ScienceComputer Science (R0)