A Mixed Reality Setup for Prototyping Holographic Cockpit Instruments | SpringerLink
Skip to main content

A Mixed Reality Setup for Prototyping Holographic Cockpit Instruments

  • Conference paper
  • First Online:
Virtual Reality and Mixed Reality (EuroXR 2023)

Abstract

This paper discusses a possible solution to allow rapid prototyping of augmented reality content for evaluating user assistance systems. Building upon current approaches from the automotive context, it presents options to transfer these to the aerospace context, focusing on upcoming electric Vertical Take-Off and Landing aircraft. By showing issues of using optical-see-through glasses inside a moving simulator, a solution for using video-see-through head-mounted displays instead is presented. As a solution, a modular system setup that can handle different rendering sources to create contact-analog augmentations on top of a virtual environment while using video-see-through capabilities to interact with the physical cockpit environment is presented. The main contribution is a process to avoid manual calibration between the different coordinate systems across the involved applications. To further discuss holographic content for vehicle-based augmentations, a first taxonomy is discussed on locating augmentations to prototype such concepts with the presented Mixed-Reality-Simulator.

S. Liedtke and M. Zintl—contributed equally to this work

Supported by “Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://varjo.com/products/xr-3/ (accessed on 15 May 2023).

  2. 2.

    https://www.x-plane.com/ (accessed on 15 May 2023).

  3. 3.

    https://github.com/openvrmc/ (Accessed 15 May 2023).

References

  1. Barbosa, S., et al. (eds.): Elements of XR prototyping: characterizing the role and use of prototypes in augmented and virtual reality design. ACM, New York (2022). https://doi.org/10.1145/3491102

  2. Echtler, F., Huber, M.J., Pustka, D., Keitler, P., Klinker, G.: Splitting the scene graph. In: Proceedings of the International Conference on Computer Graphics Theory and Applications (GRAPP), pp. 456–459. INSTICC, Funchal, Madeira (2008)

    Google Scholar 

  3. Ernst, J.M., Laudien, T., Schmerwitz, S.: Implementation of a mixed-reality flight simulator: blending real and virtual with a video-see-through head-mounted display. In: Solomon, L., Schwartz, P.J. (eds.) Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications V, vol. 12538, p. 125380R. International Society for Optics and Photonics, SPIE (2023). https://doi.org/10.1117/12.2664848

  4. Haiduk, P.M.: Display formats for smart glasses to support pilots in general aviation. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany (2017)

    Google Scholar 

  5. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. E77-D(12), 1321–1329 (1994)

    Google Scholar 

  6. Pierdicca, R., Frontoni, E., Pollini, R., Trani, M., Verdini, L.: The use of augmented reality glasses for the application in industry 4.0. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 389–401. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_30

    Chapter  Google Scholar 

  7. Poitschke, T., Ablassmeier, M., Rigoll, G., Bardins, S., Kohlbecher, S., Schneider, E.: Contact-analog information representation in an automotive head-up display. In: Proceedings of the 2008 Symposium on Eye Tracking Research & Applications, ETRA ’08, pp. 119–122. Association for Computing Machinery, New York (2008). https://doi.org/10.1145/1344471.1344502

  8. Schneider, M., Bruder, A., Necker, M., Schluesener, T., Henze, N., Wolff, C.: A real-world driving experiment to collect expert knowledge for the design of AR HUD navigation that covers less. In: Mensch und Computer 2019 - Workshopband. Gesellschaft fur Informatik E.V., Bonn (2019). https://doi.org/10.18420/muc2019-ws-610

  9. Lavie, T., Meyer, J.: Benefits and costs of adaptive user interfaces. Int. J. Hum Comput Stud. 68(8), 508–524 (2010). https://doi.org/10.1016/j.ijhcs.2010.01.004

    Article  Google Scholar 

  10. Tönnis, M.: Towards automotive augmented reality. Dissertation, Technische Universität München (2008)

    Google Scholar 

  11. Tönnis, M., Plecher, D.A., Klinker, G.: Representing information-classifying the augmented reality presentation space. Comput. Graph. 37(8), 997–1011 (2013)

    Article  Google Scholar 

  12. Tuceryan, M., Navab, N.: Single point active alignment method (SPAAM) for optical see-through HMD calibration for AR. In: Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000), pp. 149–158 (2000). https://doi.org/10.1109/ISAR.2000.880938

  13. Viertler, F.: Visual augmentation for rotorcraft pilots in degraded visual environment. Ph.D. thesis (2017)

    Google Scholar 

  14. Walko, C., Schuchardt, B.: Increasing helicopter flight safety in maritime operations with a head-mounted display. CEAS Aeronaut. J. 12(1), 29–41 (2021)

    Article  Google Scholar 

  15. Wiesner, C.A.: Increasing the maturity of the augmented reality head-up-display. Dissertation, Technische Universität München (2019)

    Google Scholar 

  16. Wiesner, C.A., Ruf, M., Sirim, D., Klinker, G.: 3D-FRC: depiction of the future road course in the head-up-display. In: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 136–143 (2017). https://doi.org/10.1109/ISMAR.2017.30

  17. Zintl, M., Marb, M., Wechner, M., Seiferth, D., Holzapfel, F.: Development of a virtual reality simulator for eVTOL flight testing. In: AIAA Aviation Forum 2022 (2022). https://doi.org/10.2514/6.2022-3941

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Liedtke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liedtke, S., Zintl, M., Holzapfel, F., Klinker, G. (2023). A Mixed Reality Setup for Prototyping Holographic Cockpit Instruments. In: Zachmann, G., et al. Virtual Reality and Mixed Reality. EuroXR 2023. Lecture Notes in Computer Science, vol 14410. Springer, Cham. https://doi.org/10.1007/978-3-031-48495-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48495-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48494-0

  • Online ISBN: 978-3-031-48495-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics