How Domain Engineering Can Help to Raise Adoption Rates of Artificial Intelligence in Healthcare | SpringerLink
Skip to main content

How Domain Engineering Can Help to Raise Adoption Rates of Artificial Intelligence in Healthcare

  • Conference paper
  • First Online:
Information Integration and Web Intelligence (iiWAS 2023)

Abstract

Regardless of the often-claimed success of artificial intelligence (AI) and machine learning (ML), AI-based Digital Decision Support Systems (DDSSs) still suffer from low adoption rates. Much algorithmic research is done, but examples of AI bringing tangible benefits to the healthcare industry are rare. We argue that one of the reasons for low adoption rates is missing domain understanding and/or the heterogeneity of domain understanding among the DDSS developers and domain experts. To overcome this, we are working towards a methodology to utilize the Domain Engineering approach to create a shared common understanding of key concepts and relationships within the healthcare domain in a structured, formalized way. In the realm of complex interdisciplinary DDSS development within healthcare, the Domain Engineering approach can serve as a valuable instrument for bridging the gap between IT professionals and domain experts. It facilitates establishing a shared comprehension of the domain and hopefully contributes significantly to increasing the value and adoption rates of DDSSs in the clinical process. In this paper, we are proposing our work-in-progress ideas and preliminary results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.hl7.org/.

  2. 2.

    https://loinc.org/.

  3. 3.

    https://icd.who.int/browse10/.

  4. 4.

    https://www.snomed.org/.

References

  1. Arlow, J., Neustadt, I.: Enterprise Patterns and MDA: Building Better Software with Archetype Patterns and UML. Object Technology Series, Boston, Addison-Wesley (2003)

    Google Scholar 

  2. Beale, T.: Archetypes: constraint-based domain models for future-proof information systems. In: OOPSLA 2002 Workshop on Behavioural Semantics, November 4–8, Washington State Convention and Trade Center, vol. 105, pp. 1–69. Citeseer, Seattle, Washington, USA (2002)

    Google Scholar 

  3. Bertl, M.: News analysis for the detection of cyber security issues in digital healthcare: a text mining approach to uncover actors, attack methods and technologies for cyber defense. Young Inf. Sci. 4, 1–15 (2019)

    Google Scholar 

  4. Bertl, M., Bignoumba, N., Ross, P., Yahia, S.B., Draheim, D.: Evaluation of deep learning-based depression detection using medical claims data. SSRN (2023). https://doi.org/10.2139/ssrn.4478987

    Article  Google Scholar 

  5. Bertl, M., Kankainen, K.J.I., Piho, G., Draheim, D., Ross, P.: Evaluation of data quality in the Estonia national health information system for digital decision support. In: Proceedings of the 3rd International Health Data Workshop (2023)

    Google Scholar 

  6. Bertl, M., Metsallik, J., Ross, P.: A systematic literature review of AI-based digital decision support systems for post-traumatic stress disorder. Front. Psychiatry 13 (2022). https://doi.org/10.3389/fpsyt.2022.923613. https://www.frontiersin.org/articles/10.3389/fpsyt.2022.923613

  7. Bertl, M., Ross, P., Draheim, D.: A survey on AI and decision support systems in psychiatry - uncovering a dilemma. Expert Syst. Appl. 202, 117464 (2022). https://doi.org/10.1016/j.eswa.2022.117464. https://www.sciencedirect.com/science/article/pii/S0957417422007965

  8. Bertl, M., Ross, P., Draheim, D.: Systematic AI support for decision making in the healthcare sector: obstacles and success factors. Health Policy Technol. (2023)

    Google Scholar 

  9. Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework. In: Proceedings 16th Annual International Conference on Automated Software Engineering (ASE 2001), pp. 273–280. IEEE (2001)

    Google Scholar 

  10. Bjørner, D.: Software Engineering 1: Abstraction and Modelling. Springer Science & Business Media, Berlin Heidelberg (2006)

    Google Scholar 

  11. Bjørner, D.: Software Engineering 3: Domains, Requirements, and Software Design. Springer Science & Business Media, Berlin Heidelberg (2006)

    Google Scholar 

  12. Bjørner, D.: Domain theory: practice and theories a discussion of possible research topics. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 1–17. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75292-9_1

    Chapter  Google Scholar 

  13. Blobel, B., Oemig, F., Ruotsalainen, P., Lopez, D.M.: Transformation of health and social care systems-an interdisciplinary approach toward a foundational architecture. Front. Med. 9, 802487 (2022)

    Article  Google Scholar 

  14. Chockley, K., Emanuel, E.: The end of radiology? Three threats to the future practice of radiology. J. Am. College Radiol. 13(12, Part A), 1415–1420 (2016). https://doi.org/10.1016/j.jacr.2016.07.010

  15. Chui, M., Hall, B., Mayhew, H., Singla, A., Sukharevsky, A.: The state of AI in 2022 - and a half decade in review (2022). https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review. Accessed 04 Apr 2023

  16. Clements, P., Northrop, L.: Software Product Lines. Addison-Wesley Boston (2002)

    Google Scholar 

  17. Fast, E., Horvitz, E.: Long-term trends in the public perception of artificial intelligence. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, pp. 963–969 (2017)

    Google Scholar 

  18. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley Professional (1997)

    Google Scholar 

  19. Gansel, X., Mary, M., van Belkum, A.: Semantic data interoperability, digital medicine, and e-health in infectious disease management: a review. Europ. J. Clin. Microbiol. Infect. Dis. 38(6), 1023–1034 (2019). https://doi.org/10.1007/s10096-019-03501-6

    Article  Google Scholar 

  20. Greenfield, J., Short, K.: Software factories: assembling applications with patterns, models, frameworks and tools. In: Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, pp. 16–27 (2003)

    Google Scholar 

  21. Halevy, A.: Why your data won’t mix: new tools and techniques can help ease the pain of reconciling schemas. Queue 3(8), 50–58 (2005)

    Article  Google Scholar 

  22. Hay, D.C.: Data Model Patterns: Conventions of Thought. Pearson Education (2013)

    Google Scholar 

  23. ISO: 13940:2015 Health informatics - system of concepts to support continuity of care. International Organization for Standardization, Geneva. Switzerland (2015)

    Google Scholar 

  24. Kankainen, K.: Usages of the ContSys standard: a position paper. In: Bellatreche, L., Chernishev, G., Corral, A., Ouchani, S., Vain, J. (eds.) MEDI 2021. CCIS, vol. 1481, pp. 314–324. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87657-9_24

    Chapter  Google Scholar 

  25. Munir, K., Sheraz Anjum, M.: The use of ontologies for effective knowledge modelling and information retrieval. Appl. Comput. Inf. 14(2), 116–126 (2018). https://doi.org/10.1016/j.aci.2017.07.003. https://www.sciencedirect.com/science/article/pii/S2210832717300649

  26. Piho, G., Roost, M., Perkins, D., Tepandi, J.: Towards archetypes-based software development. In: Sobh, T., Elleithy, K. (eds.) Innovations in Computing Sciences and Software Engineering, pp. 561–566. Springer, Dordrecht (2010)

    Chapter  Google Scholar 

  27. Piho, G., Tepandi, J., Parman, M., Perkins, D.: From archetypes-based domain model of clinical laboratory to LIMS software. In: The 33rd International Convention MIPRO, pp. 1179–1184. IEEE, New York (2010)

    Google Scholar 

  28. Piho, G., Tepandi, J., Roost, M.: Domain analysis with archetype patterns based Zachman framework for enterprise architecture. In: 2010 International Symposium on Information Technology, vol. 3, pp. 1351–1356. IEEE, New York (2010)

    Google Scholar 

  29. Piho, G., Tepandi, J., Roost, M.: Evaluation of the archetypes based development. In: Databases and Information Systems VI, pp. 283–295. IOS Press, Amsterdam (2011)

    Google Scholar 

  30. Piho, G., Tepandi, J., Roost, M.: Archetypes based techniques for modelling of business domains, requirements and software. In: Information Modelling and Knowledge Bases XXIII, pp. 219–238. IOS Press, Amsterdam (2012)

    Google Scholar 

  31. Piho, G., Tepandi, J., Thompson, D., Tammer, T., Parman, M., Puusep, V.: Archetypes based meta-modeling towards evolutionary, dependable and interoperable healthcare information systems. Procedia Comput. Sci. 37, 457–464 (2014). https://doi.org/10.1016/j.procs.2014.08.069. https://www.sciencedirect.com/science/article/pii/S1877050914010345

  32. Piho, G., Tepandi, J., Thompson, D., Woerner, A., Parman, M.: Business archetypes and archetype patterns from the HL7 RIM and openEHR RM perspectives: towards interoperability and evolution of healthcare models and software systems. Procedia Comput. Sci. 63, 553–560 (2015)

    Article  Google Scholar 

  33. Prakash, A.V., Das, S.: Medical practitioner’s adoption of intelligent clinical diagnostic decision support systems: a mixed-methods study. Inf. Manage. 58(7), 103524 (2021)

    Article  Google Scholar 

  34. Raavel, K.M., Kankainen (supervisor), K., Piho (supervisor), G.: Introduction of LOINC terminology to archetype patterns based ABC4HEDA base model (2022). https://digikogu.taltech.ee/et/Item/9086088f-5e01-446e-9e84-176dab21bfbe, B.Sc. thesis, in Estonian

  35. Randmaa, R., Bossenko, I., Klementi, T., Piho, G., Ross, P.: Evaluating business meta-models for semantic interoperability with FHIR resources. In: HEDA-2022: The International Health Data Workshop, June 19–24, 2022, Bergen, p. 14. CEURAT, Norway (2022)

    Google Scholar 

  36. Schwartz, W.B.: Medicine and the computer: the promise and problems of change. In: Anderson, J.G., Jay, S.J. (eds.) Use and Impact of Computers in Clinical Medicine, pp. 321–335. Springer, New York (1987). https://doi.org/10.1007/978-1-4613-8674-2_20

    Chapter  Google Scholar 

  37. Silverston, L.: The Data Model Resource Book, Volume 1: A Library of Universal Data Models for All Enterprises. John Wiley & Sons (2011)

    Google Scholar 

  38. Sõerd, T., Kankainen, K., Piho, G., Klementi, T., Ross, P.: Specification of medical processes in accordance with international standards and agreements. In: 11th International Conference on Model-Based Software and Systems Engineering (Modelsward’2023), Feb 2023, Lisbonne, Portugal, p. 14 (2022)

    Google Scholar 

  39. Sutton, R.T., Pincock, D., Baumgart, D.C., Sadowski, D.C., Fedorak, R.N., Kroeker, K.I.: An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit. Med. 3(1), 17 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work in the project ‘ICT programme’ was supported by the European Union through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Bertl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bertl, M., Klementi, T., Piho, G., Ross, P., Draheim, D. (2023). How Domain Engineering Can Help to Raise Adoption Rates of Artificial Intelligence in Healthcare. In: Delir Haghighi, P., et al. Information Integration and Web Intelligence. iiWAS 2023. Lecture Notes in Computer Science, vol 14416. Springer, Cham. https://doi.org/10.1007/978-3-031-48316-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48316-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48315-8

  • Online ISBN: 978-3-031-48316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics