Proving the Potential of Skeleton Based Action Recognition to Automate the Analysis of Manual Processes | SpringerLink
Skip to main content

Proving the Potential of Skeleton Based Action Recognition to Automate the Analysis of Manual Processes

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 823))

Included in the following conference series:

  • 211 Accesses

Abstract

In manufacturing sectors such as textiles and electronics, manual processes are a fundamental part of production. The analysis and monitoring of the processes is necessary for efficient production design. Traditional methods for analyzing manual processes are complex, expensive, and inflexible. Compared to established approaches such as Methods-Time-Measurement (MTM), machine learning (ML) methods promise: Higher flexibility, self-sufficient & permanent use, lower costs. In this work, based on a video stream, the current motion class in a manual assembly process is detected. With information on the current motion, Key-Performance-Indicators (KPIs) can be derived easily. A skeleton-based action recognition approach is taken, as this field recently shows major success in machine vision tasks. For skeleton-based action recognition in manual assembly, no sufficient pre-work could be found. Therefore, a ML pipeline is developed, to enable extensive research on different (pre-) processing methods and neural nets. Suitable well generalizing approaches are found, proving the potential of ML to enhance analyzation of manual processes. Models detect the current motion, performed by an operator in manual assembly, but the results can be transferred to all kinds of manual processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 20591
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 25739
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Torres, Y., Nadeau, S., Landau, K.: Classification and quantification of human error in manufacturing: a case study in complex manual assembly. Basel: Multidisciplinary Digital Publishing Institute—Applied Sciences (2021)

    Google Scholar 

  2. Zhou, F., Ji, Y., Jiao, R.J.: Affective and cognitive design for mass personalization: status and prospect. Springer Science+Business Media, Berlin (2012)

    Google Scholar 

  3. Becker, T.: Prozesse in Produktion und Supply Chain optimieren, 3rd edn. Springer Vieweg, Berlin (2018)

    Google Scholar 

  4. Erlach, K.: Wertstromdesign. Der Weg zur schlanken Fabrik, 3rd. edn. Springer, Berlin (2020)

    Google Scholar 

  5. Brüggemann, H., Bremer, P.: Grundlagen Qualitätsmanagement—Von den Werkzeugen über Methoden zum TQM, 3rd edn. Springer Vieweg, Wiesbaden (2020)

    Google Scholar 

  6. Bendzioch, S., Hinrichsen, S., Adrian, B., Bornewasser, M.: Method for measuring the application potential of assembly assistance systems. In: International Conference on Applied Human Factors and Ergonomics (AHFE), Washington (2019)

    Google Scholar 

  7. Johansson, P.E.C., Malmsköld, L., Fast-Berglund, Å., Moestam, L.: Challenges of handling assembly information in global manufacturing companies. Bradford: J. Manuf. Technol. Manage. (2019)

    Google Scholar 

  8. Correia, D., Silva, F.J.G., Gouveia, R.M., Pereira, T., Ferreira, L.P.: Improving manual assembly lines devoted to complex electronic devices by applying Lean tools. In: International Conference on Flexible Automation and Intelligent Manufacturing (FAIM), Columbus (2018)

    Google Scholar 

  9. de Almeida, D.L.M., Ferreira, J.C.E.: Analysis of the methods time measurement (MTM) methodology through its application in manufacturing companies. In: International Conference on Flexible Automation and Intelligent Manufacturing (FAIM), Middlesbrough (2009)

    Google Scholar 

  10. Bures, M., Pivodova, P.: Comparison of the predetermined time systems MTM-1 and BasicMOST in assembly production. In: International Conference on Industrial Engineering and Engineering Management, Bangkok (2013)

    Google Scholar 

  11. Pokorni, B., Braun, M., Knecht, C.: Menschenzentrierte KI-Anwendungen in der Produktion—Praxiserfahrungen und Leitfaden zu betrieblichen Einführungsstrategien. Fraunhofer-Gesellschaft e.V, Stuttgart (2021)

    Google Scholar 

  12. Kim, Y., Ling, H.: Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine. Trans. Geosci. Rem. Sens. (2009). Piscataway Township

    Google Scholar 

  13. Knaak, C., Eßen, J.V., Kröger, M., Schulze, F., Abels, P., Gillner, A.: A spatio-temporal ensemble deep learning architecture for real-time defect detection during laser welding on low power embedded computing boards. Multidisciplinary Digital Publishing Institute—Sensors, Basel (2021)

    Google Scholar 

  14. Malaisé, A., Maurice, P., Colas, F., Charpillet, F., Ivaldi, S.: Activity recognition with multiple wearable sensors for industrial applications. In: International Conference on Advances in Computer-Human Interactions (ACHI), Rom (2018)

    Google Scholar 

  15. Faccio, M., Ferrari, E., Gamberi M., Pilati, F.: Human factor analyser for work measurement of manual manufacturing and assembly processes. Int. J. Adv. Manuf. Technol. (2019). London

    Google Scholar 

  16. Zhu, Y., Li, X., Liu, C., Zolfaghari, M., Xiong, Y., Wu, C., Zhang, Z., Tighe, J., Manmatha, R., Li, M.: A Comprehensive Study of Deep Video Action Recognition. Bellevue (2020)

    Google Scholar 

  17. Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C., Grundmann, M.: MediaPipe Hands: On-device Real-time Hand Tracking. Mountain View (2020)

    Google Scholar 

  18. MediaPipe. “MediaPipe Pose”. Mountain View: MediaPipe, Google (2022). https://google.github.io/mediapipe/solutions/pose. Accessed 25 Oct 2022

  19. Jain, A., Tompson, J., LeCun, Y., Bregler, C.: MoDeep: a deep learning framework using motion features for human pose estimation. Asia Conference on Computer Vision (ACCV), Singapore (2014)

    Google Scholar 

  20. Wang, X., Qi, C.: Detecting action-relevant regions for action recognition using a three-stage saliency detection technique. Springer Science+Business Media, Berlin (2019)

    Google Scholar 

  21. Motion Miners. “Manual Process Intelligence”. Dortmund: Motion Miners (2022). https://www.motionminers.com/en/manual-work-processes/. Accessed 25 Oct 2022

  22. Aurélion, G.: Hands-on Machine Learning with Scikit-Learn, Keras and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd edn. O’Reilly Media, Sebastopol (2019)

    Google Scholar 

  23. Chollet, F.: Deep learning with python. Manning Publications, Shelter Island (2017)

    Google Scholar 

  24. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning (adaptive computation and machine learning series). The MIT Press, Cambridge, Massachusetts (2016)

    Google Scholar 

  25. Kanga, N., Zhaob, C., Lib, J., Horstc, J.A.: A hierarchical structure of key performance indicators for operation management and continuous improvement in production systems. Int. J. Prod. Res. (2016). London

    Google Scholar 

  26. Lotter, B., Wiendahl, H.P.: Montage in der industriellen Produktion, 2nd edn. Springer, Berlin (2012)

    Google Scholar 

  27. REFA-Institute. REFA-Grundausbildung 4.0—Begriffe und Formeln. Hanser, Dortmund (2021)

    Google Scholar 

  28. Adli, D.: Do Amazon's Movement-Tracking Wristbands Violate Workers’ Privacy Rights?. Entrepreneur Media, Irvine (2018). https://www.entrepreneur.com/article/314696. Accessed 25 Oct 2022

  29. Dristhi: How Dristhi works. Mountain View: Dristhi (2022). https://drishti.com. Accessed 25 Oct 2022

  30. Elgendy, M.: Deep Learning for Vision Systems. Manning Publications, Shelter Island (2020)

    Google Scholar 

  31. Cherian, A., Fernando, B., Harandi, M., Gould, S.: Generalized rank pooling for activity recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii (2017)

    Google Scholar 

  32. Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F., Grundmann, M.: BlazePose: On-device Real-time Body Pose tracking. Mountain View (2020)

    Google Scholar 

  33. Sung, G., Sokal, K., Uboweja, E., Bazarevsky, V., Baccash, J., Bazavan, E.G., Chang, C.-L., Grundmann, M.: On-device real-time hand gesture recognition. In: Workshop on Computer Vision for Augmented and Virtual Reality (ICCV), Montreal (2021)

    Google Scholar 

  34. Duan, H., Zhao, Y., Chen, K., Shao, D., Lin, D., Dai, B.: Revisiting Skeleton-based Action Recognition. Hongkong (2021)

    Google Scholar 

  35. Chen, H., Jiang, Y., Ko, H.: Action recognition with domain invariant features of skeleton image. In: International Conference on Advanced Video and Signal-based Surveillance (AVSS), Washington (2021)

    Google Scholar 

  36. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR), Boston (2015)

    Google Scholar 

  37. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal LSTM with trust gates for 3D human action recognition. In: European Conference on Computer Vision (ECCV), Amsterdam (2016)

    Google Scholar 

  38. Liu, J., Wang, G., Duan, L.-Y., Abdiyeva, K., Kot, A.C.: Skeleton based human action recognition with global context aware attention LSTM networks. Transactions on Image Processing, Piscataway Township (2018)

    Google Scholar 

  39. Ouyang, X., Xu, S., Zhang, C., Zhou, P., Yang, Y., Liu, G., Li, X.: A 3D-CNN and LSTM based multi-task learning architecture for action recognition. Institute of Electrical and Electronics Engineers—Access, Piscataway Township (2019)

    Google Scholar 

  40. Mahmud, H., Morshed, M.M., Hasan, M.K.: A deep learning-based multimodal depth-aware dynamic hand gesture recognition system. Ithaca (2021)

    Google Scholar 

  41. Yan, S.; Xiong, Y.; Lin, D. “Spatial Temporal Graph Convolutional Networks for Skeleton- Based Action Recognition”. Palo Alto: Association for the Advancement of Artificial Intelligence, 2018

    Google Scholar 

  42. Zhang, S., Zhao, W., Guan, Z., Peng, X., Peng, J.: Keypoint-graph-driven learning framework for object pose estimation. In: Conference on Computer Vision and Pattern Recognition (CVPR), Nashville (2021)

    Google Scholar 

  43. Berger, M.: Manual-process-action-recognition. https://github.com/BeeJayK/manual-process-action-recognition. Accessed 25 Oct 2022

  44. TensorFlow: tf.data: Build TensorFlow input pipelines. TensorFlow. https://www.tensorflow.org/guide/data. Accessed 25 Oct 2022

  45. Biewald, L.: Experiment Tracking with Weights and Biases. Weights & Biases. http://wandb.com/. Accessed 25 Oct 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berger, M., Cloppenburg, F., Eufinger, J., Gries, T. (2024). Proving the Potential of Skeleton Based Action Recognition to Automate the Analysis of Manual Processes. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-031-47724-9_42

Download citation

Publish with us

Policies and ethics