Shared Intentionality Before Birth: Emulating a Model of Mother-Fetus Communication for Developing Human-Machine Systems | SpringerLink
Skip to main content

Shared Intentionality Before Birth: Emulating a Model of Mother-Fetus Communication for Developing Human-Machine Systems

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 824))

Included in the following conference series:

  • 390 Accesses

Abstract

Numerous studies show the ability of fetuses for affective evaluation and sensitivity to the sounds and rhythms of other human presence. This shows an appearance of fetuses’ perception in intentional engagement with the environment. It means that fetuses are able to select the relevant stimulus from the noisy environment with a cacophony of other stimuli: chemical interactions, pressure changes, and electromagnetic fields. This ability can appear in ecological learning only. The theoretical study observes the literature to understand what environmental features of the mother-fetus communication model enable a fetus to interact with the mother in ecological training. The objective is to design Human-Machine Systems and, specifically, computer-aided Medical Diagnosis systems based on the mother-fetus communication model. The article proposes the physiological mechanism of shared intentionality that relies on the mother's heart pulsed electromagnetic field (PEMF) impact on the adenosine receptors in both organisms. The study creates the concept design for future research to provide evidence of the mother-fetus communication model and establish human-computer connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 32889
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zoia, S., et al.: Evidence of early development of action planning in the human foetus: a kinematic study. Exp. Brain Res. 176, 217–226 (2007)

    Article  Google Scholar 

  2. Castiello, U., et al.: Wired to be social: the ontogeny of human interaction. PLoS ONE 5(10), e13199 (2010)

    Article  Google Scholar 

  3. Sasaki, M., Yanagihara, T., Naitoh, N., Hata, T.: Four-dimensional sonographic assessment of inter-twin contact late in the first trimester. Int. J. Gynecol. Obstet. 108(2), 104–107 (2010)

    Article  Google Scholar 

  4. Kisilevsky, B.C.: Fetal auditory processing: implications for language development? Fetal Development. Research on Brain and Behavior, Environmental Influences, and Emerging Technologies, pp. 133–152 (2016)

    Google Scholar 

  5. Hepper, P.G., Scott, D., Shahidullah, S.: Newborn and fetal response to maternal voice. J. Reprod. Infant Psychol. 11, 147–153 (1993)

    Article  Google Scholar 

  6. Lee, G.Y.C., Kisilevsky, B.S.: Fetuses respond to father’s voice but prefer mother’s voice after birth. Dev. Psychobiol. 56, 1–11 (2014)

    Article  Google Scholar 

  7. Krueger, C,A., Cave, E.C., Garvan, C.: Fetal response to live and recorded maternal speech. Biol. Res. Nurs. 17, 112–120 (2015)

    Google Scholar 

  8. Lecanuet, J.P., Granier-Deferre, C., Jacquet, A.Y., Capponi, I., Ledru, L.: Prenatal discrimination of a male and a female voice uttering the same sentence. Early Dev. Parent. 2(4), 217–228 (1993)

    Article  Google Scholar 

  9. Hepper, P.: Behavior during the prenatal period: Adaptive for development and survival. Child Dev. Perspect. 9(1), 38–43 (2015). https://doi.org/10.1111/cdep.12104

    Article  Google Scholar 

  10. Jardri, R., Houfflin-Debarge, V., Delion, P., Pruvo, J.-P., Thomas, P., Pins, D.: Assessing fetal response to maternal speech using a noninvasive functional brain imaging technique. Int. J. Dev. Neurosci. 30, 159–161 (2012). https://doi.org/10.1016/j.ijdevneu.2011.11.002

    Article  Google Scholar 

  11. Thompson, E.: Mind in Life: Biology, Phenomenology, and the Sciences of Mind. Harvard University Press (2010), Sept 30

    Google Scholar 

  12. Varela, F.J.: Principles of Biological Autonomy (1979). ISBN-10:0135009502, ISBN- 13:978–0135009505

    Google Scholar 

  13. Bourgine, P., Varela, F.J.: Towards a practice of autonomous systems. In: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, vol. 1, pp. xi±xvii. MIT Press, Cambridge, MA (1992), 2 Apr 1992

    Google Scholar 

  14. Trevarthen, C., Delafield-Butt, J.: Development of consciousness. In: Hopkins, B., Geangu, E.., Linkenauger, S. (eds.) Cambridge Encyclopedia of Child Development, 2nd edn., pp. 821–835 (2017). Cambridge University Press, Cambridge. ISBN: 9781107103412. https://core.ac.uk/download/pdf/77034048.pdf. Accessed 02 Mar 2023

  15. Searle, J.R.: The Rediscovery of the Mind. MITPress, London (1992)

    Book  Google Scholar 

  16. Bargh, J.A.: Goal and intent: Goal-directed thought and behavior are often unintentional. Psychol. Inq. 1(3), 248–251 (1990)

    Article  Google Scholar 

  17. Gregory, R.: “Perception” in Gregory, Zangwill, pp. 598–601 (1987)

    Google Scholar 

  18. Treisman, A.: Solutions to the binding problem: progress through controversy and convergence. Neuron 24(1), 105–125 (1999)

    Article  Google Scholar 

  19. Tazerart, S., Mitchell, D.E., Miranda-Rottmann, S., Araya, R.: A spike-timing-dependent plasticity rule for dendritic spines. Nat. Commun. 11, 4276 (2020)

    Article  Google Scholar 

  20. Feldman, D.E.: The spike-timing dependence of plasticity. Neuron 75, 556–571 (2012)

    Article  Google Scholar 

  21. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

    Article  Google Scholar 

  22. Debanne, D., Gahwiler, B.H., Thompson, S.M.: Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507, pp. 237–247 (1998)

    Google Scholar 

  23. Sjöström, P.J., Turrigiano, G.G., Nelson, S.B.: Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001)

    Article  Google Scholar 

  24. Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A., Poo, M.M.: A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998)

    Article  Google Scholar 

  25. Val Danilov, I.: Smartphone in detecting developmental disability in infancy: a theoretical approach to shared intentionality for assessment tool of cognitive decline and e-learning. In: Arai, K. (ed.) Proceedings of the SAI 2022, LNNS 508, pp. 1–11, 2022. Springer Nature Switzerland AG (2022). https://doi.org/10.1007/978-3-031-10467-1_19. Accessed 02 Mar 2023

  26. Geangu, E., Benga, O., Stahl, D., Striano, T.: Contagious crying beyond the first days of life. Infant Behav. Dev. 33, 279–288 (2010)

    Article  Google Scholar 

  27. Dondi, M., Simion, F., Caltran, G.: Can newborns discriminate between their own cry and the cry of another newborn infant? Dev. Psychol. 35, 418 (1999)

    Article  Google Scholar 

  28. Martin, G.B., Clark, R.D.: Distress crying in neonates: Species and peer specificity. Dev. Psychol. 18, 3–9 (1982)

    Article  Google Scholar 

  29. Sagi, A., Hoffman, M.L.: Empathic distress in the newborn. Dev. Psychol. 12, 175–176 (1976)

    Article  Google Scholar 

  30. Simner, M.L.: Newborn’s response to the cry of another infant. Dev. Psychol. 5, 136–150 (1971)

    Article  Google Scholar 

  31. Meltzoff, A.N.: Imitation and other minds: the ‘like me’ hypothesis. In: Hurley, S., Chater, N. (eds) Perspectives on Imitation: From Neuroscience to Social Science, vol. 2, pp. 55–78. MIT Press, Cambridge (2005)

    Google Scholar 

  32. Meltzoff, A.N., Moore, K.: Imitation of facial and manual gestures by human neonates. Science 198, 75–78 (1997)

    Article  Google Scholar 

  33. Nagy, E., Pilling, K., Orvos, H., Molnar, P.: Imitation of tongue protrusion in human neonates: Specificity of the response in a large sample. Dev. Psychol. 49, 1628–1638 (2013)

    Article  Google Scholar 

  34. Simpson, E.A., Murray, L., Paukner, A., Ferrari, P.F.: The mirror neuron system as revealed through neonatal imitation: presence from birth, predictive power and evidence of plasticity. Philosoph Trans R Soc B Biol Sci 369, 20130289 (2014)

    Article  Google Scholar 

  35. Pascalis, O., de Schonen, S.: Recognition memory on 3- to 4-day-old human neonates. NeuroReport 5, 1721–1724 (1994)

    Article  Google Scholar 

  36. Kelly, D.J., et al.: Cross-race preferences for same-race faces extend beyond the African versus caucasian contrast in 3-month-old infants. Infancy 11, 87–95 (2007)

    Article  Google Scholar 

  37. Simion, F., Leo, I., Turati, C., Valenza, E., Dalla Barba, B.: How face specialization emerges in the first months of life. Progress Brain Res. 164, 169–85 (2007)

    Google Scholar 

  38. Goren, C.C., Sarty, M., Wu, P.Y.K.: Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56, 544–549 (1975)

    Article  Google Scholar 

  39. Johnson, M.H., Dziurawiec, S., Ellis, H., Morton, J.: Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition 40, 1–19 (1991)

    Article  Google Scholar 

  40. Quinn, P.C., Kelly, D.J., Lee, K., Pascalis, O., Slater, A.M.: Preference for attractive faces in human infants extends beyond conspecifics. Dev. Sci. 11, 76–83 (2008)

    Article  Google Scholar 

  41. Bushnell, I.W.R.: Mother’s face recognition in newborn infants: Learning and memory. Infant Child Dev. Int. J. Res. Pract. 10, 67–74 (2001)

    Article  Google Scholar 

  42. Bushnell, I.W.R., Sai, F., Mullin, J.T.: Neonatal recognition of the mother’s face. Br. J. Dev. Psychol. 7, 3–15 (1989)

    Article  Google Scholar 

  43. Field, T.M., Cohen, D., Garcia, R., Greenberg, R.: Mother–stranger face discrimination by the newborn. Infant Behav. Dev. 7, 19–25 (1984)

    Article  Google Scholar 

  44. Pascalis, O., de Schonen, S., Morton, J., Deruelle, C., Fabre-Grenet, M.: Mother’s face recognition in neonates: a replication and an extension. Infant Behav. Dev. 17, 79–85 (1995)

    Article  Google Scholar 

  45. Val Danilov, I.: Social Interaction in Knowledge Acquisition: Advanced Curriculum. Critical Review of Studies Relevant to Social Behavior of Infants. Journal of Higher Education Theory and Practice, 20, 12 (2020)

    Google Scholar 

  46. Gopnik, A.: Index of authors. J. Child Lang. 8, 495–499 (1981)

    Article  Google Scholar 

  47. Trevarthen, C.: Signs before speech. In: Sebeok, T.A., Umiker-Sebeok, J. (eds.) The Semiotic Web. De Gruyter Mouton, Berlin and Boston, pp. 689–756 (1989). https://doi.org/10.1515/9783110874099.689

  48. Yingling, J.M.: Does that mean ‘no’? Negotiating proto-conversation in infant-caregiver pairs. Res. Lang. Soc. Interact. 24, 71–108 (1990). https://doi.org/10.1080/08351819009389333

  49. Bråten, S., Manstead, A., Oatley, K. (eds.): Intersubjective Communication and Emotion in Early Ontogeny, No. 3. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  50. Tomasello, M.: Becoming Human: A Theory of Ontogeny. Belknap Press of Harvard University Press, Harvard (2019). https://doi.org/10.4159/9780674988651

  51. Gilbert, M.: On Social Facts. Routledge, New York (1989)

    Google Scholar 

  52. Tuomela, R.: The Importance of Us. SUP. Stanford University Press, Stanford, CA (1995)

    Google Scholar 

  53. Atmaca, S., Sebanz, N., Prinz, W., Knoblich, G.: Action co-representation: the joint SNARC effect. Soc. Neurosci. 3(3–4), 410–420 (2008). https://doi.org/10.1080/17470910801900908

    Article  Google Scholar 

  54. Shteynberg, G., Galinsky, A.D.: Implicit coordination: sharing goals with similar others intensifies goal pursuit. J. Exp Soc Psychol 47(6), 1291–1294 (2011). ISSN 0022–1031. https://doi.org/10.1016/j.jesp.2011.04.012

  55. Reddish, P., Fischer, R., Bulbulia, J.: Let’s dance together: synchrony, shared intentionality and cooperation. PLoS ONE 8(8), e71182 (2013). https://doi.org/10.1371/journal.pone.0071182

    Article  Google Scholar 

  56. McClung, J.S., Placì, S., Bangerter, A., Clément, F., Bshary, R.: The language of cooperation: shared intentionality drives variation in helping as a function of group membership. Proc. R. Soc. B 284, 20171682 (2017). https://doi.org/10.1098/rspb.2017.1682

    Article  Google Scholar 

  57. Tang, N., Gong, S., Zhao, M., Gu, C., Zhou, J., Shen, M., Gao, T.: Exploring an imagined “We” in human collective hunting: In: Joint Commitment within Shared Intentionality, Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 2022, pp. 44 (2022). https://escholarship.org/uc/item/3wj722pb

  58. Val Danilov, I., Mihailova, S., Perepjolkina, V.: Unconscious social interaction, Coherent intelligence in Learning, Proceedings of the 12th Annual Conference ICERI Seville (Spain), pp. 2217–2222 (2019). https://doi.org/10.21125/iceri.2019.0606

  59. Val Danilov, I., Mihailova, S., Svajyan, A.: Computerized assessment of cognitive development in neurotypical and neurodivergent children. OBM Neurobiol 6(3), 18 (2022). https://doi.org/10.21926/obm.neurobiol.2203137. https://www.lidsen.com/journals/neurobiology/neurobiology-06-03-137. Accessed 02 Mar 2023

  60. Fishburn, F.A., et al.: Putting our heads together: interpersonal neural synchronization as a biological mechanism for shared intentionality. Soc. Cogn. Affect. Neurosci. 13(8), 841–849 (2018)

    Article  Google Scholar 

  61. Astolfi, L., et al.: Neuroelectrical hyperscanning measures simultaneous brain activity in humans. Brain Topogr. 23, 243–256 (2010)

    Article  Google Scholar 

  62. Szymanski, C., et al.: Teams on the same wavelength perform better: inter-brain phase synchronization constitutes a neural substrate for social facilitation. Neuroimage 152, 425–436 (2017)

    Article  Google Scholar 

  63. Hu, Y., Pan, Y., Shi, X., Cai, Q., Li, X., Cheng, X.: Inter-brain synchrony and cooperation context in interactive decision making. Biol. Psychol. 133, 54–62 (2018)

    Article  Google Scholar 

  64. Painter, D.R., Kim, J.J., Renton, A.I., Mattingley, J.B.: Joint control of visually guided actions involves concordant increases in behavioural and neural coupling. Commun. Biol. 29, 4(1), 1–5 (2021). https://doi.org/10.1038/s42003-021-02319-3

  65. Val Danilov, I., Mihailova, S.: A new perspective on assessing cognition in children through estimating shared intentionality. J. Intell. 10, 21 (2022). https://doi.org/10.3390/jintelligence10020021

  66. Val Danilov, I., Mihailova, S.: Neuronal coherence agent for shared intentionality: a hypothesis of neurobiological processes occurring during social interaction. OBM Neurobiol. 5(4), 26 (2021). https://doi.org/10.21926/obm.neurobiol.2104113

  67. Val Danilov, I.: Advanced artificial intelligence in contactless human-computer systems through shared intentionality. In: Arai, K. (ed.) Advances in Information and Communication. FICC 2022. Lecture Notes in Networks and Systems, vol. 438. Springer, Cham. (2022). https://doi.org/10.1007/978-3-030-98012-2_54

  68. Huang, M., Li, P., Chen, F., Cai, Z., Yang, S., Zheng, X., Li, W.: Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields. Cancer Med. (2022)

    Google Scholar 

  69. Barker, A.T., Jalinous, R., Freeston, I.L.: Non-invasive magnetic stimulation of human motor cortex. Lancet (London, England) 1(8437), 1106–1107 (1985). https://doi.org/10.1016/s0140-6736(85)92413-4

    Article  Google Scholar 

  70. Frey, A.H.: Differential biologic effects of pulsed and continuous electromagnetic fields and mechanisms of effect. Ann. N. Y. Acad. Sci. 238, 273–279 (1974). https://doi.org/10.1111/j.1749-6632.1974.tb26796.x

    Article  Google Scholar 

  71. Liboff, A.R., Jenrow, K.A.: Physical mechanisms in neuroelectromagnetic therapies. NeuroRehabilitation 17(1), 9–22 (2002)

    Article  Google Scholar 

  72. Larsen, E.R., Licht, R.W., Nielsen, R.E., et al.: Transcranial pulsed electromagnetic fields for treatment-resistant depression: a multicenter 8-week single-arm cohort study. Eur. Psychiatry 63(1), e18 (2020). https://doi.org/10.1192/j.eurpsy.2020.3

    Article  Google Scholar 

  73. Bagnato, G.L., Miceli, G., Marino, N., Sciortino, D., Bagnato, G.F.: Pulsed electromagnetic fields in knee osteoarthritis: a double blind, placebo-controlled, randomized clinical trial. Rheumatology (Oxford) 55(4), 755–762 (2016). https://doi.org/10.1093/rheumatology/kev426

    Article  Google Scholar 

  74. Ross, C.L., Ang, D.C., Almeida-Porada, G.: Targeting mesenchymal stromal cells/pericytes (MSCs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis. Front. Immunol. 10, 266 (2019). https://doi.org/10.3389/fimmu.2019.00266

    Article  Google Scholar 

  75. Marmotti, A., Peretti, G.M., Mattia, S., et al.: Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: a potential strategy for tendon repair-an in vitro study. Stem Cells Int. 2018, 9048237 (2018). https://doi.org/10.1155/2018/9048237

    Article  Google Scholar 

  76. Callaghan, M.J., Chang, E.I., Seiser, N., et al.: Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast. Reconstr. Surg. 121(1), 130–141 (2008). https://doi.org/10.1097/01.prs.0000293761.27219.84

    Article  Google Scholar 

  77. Cameron, I.L., Markov, M.S., Hardman, W.E.: Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity. Cancer Cell. Int.;14(1), 125 (2014). https://doi.org/10.1186/s12935-014-0125-5

  78. Gessi, S., et al.: Pulsed electromagnetic field and relief of hypoxia-induced neuronal cell death: the signaling pathway. J. Cell. Physiol. 234(9), 15089–15097 (2019)

    Article  Google Scholar 

  79. Robertson, J.A., Théberge, J., Weller, J., Drost, D.J., Prato, F.S., Thomas, A.W.: Low-frequency pulsed electromagnetic field exposure can alter neuroprocessing in humans. J. R. Soc. Interface. 7(44), 467–473 (2010)

    Article  Google Scholar 

  80. Premi, E., et al.: Modulation of long-term potentiation-like cortical plasticity in the healthy brain with low frequency-pulsed electromagnetic fields. BMC Neurosci. 19, 1–6 (2018)

    Article  Google Scholar 

  81. Ribeiro, J.A., Sebastião, A.M., de Mendonça, A.: Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol. 68(6), 377–392 (2002). https://doi.org/10.1016/s0301-0082(02)00155-7. PMID: 12576292

    Article  Google Scholar 

  82. Sebastião, A,M,, Ribeiro, J.A.: Adenosine receptors and the central nervous system. Handb. Exp. Pharmacol. 193, 471–534 (2009). https://doi.org/10.1007/978-3-540-89615-9_16. PMID: 19639292

  83. Varani, K., et al.: Effect of pulsed electromagnetic field exposure on adenosine receptors in rat brain. Bioelectromagnetics 33(4), 279–287 (2012)

    Article  Google Scholar 

  84. Ilori, A., Gbadamosi, O.: Measurement and evaluation of extremely low frequency (Radiation) from computer monitors and laptops. Int. J. Sci. Technoledge 6(3), 73–80 (2018)

    Google Scholar 

  85. McCraty, R.: Science of the Heart, Exploring the Role of the Heart in Human, vol. 2. HeartMath Institute, Boulder Creek (2015). ISBN 978-1-5136-0636-1 Paperback

    Google Scholar 

  86. Baule, G., McFee, R.: Theory of magnetic detection of the heart’s electrical activity. J. Appl. Phys. 36(6), 2066–2073 (1965)

    Article  Google Scholar 

  87. Hart, G.: Biomagnetometry: imaging the heart’s magnetic field. Br. Heart J. 65(2), 61–62 (1991). https://doi.org/10.1136/hrt.65.2.61

    Article  Google Scholar 

  88. McCraty, R., Atkinson, M., Tomasino, D., Tiller, W.A.: The electricity of touch: detection and measurement of cardiac energy exchange between people. In: Brain and Values, pp. 359–379. Psychology Press (2018)

    Google Scholar 

  89. Kadic, A.S., Kurjak, A.: Cognitive functions of the fetus. Ultraschall Med. 38, 181–189 (2017)

    Google Scholar 

  90. Val Danilov, I.: A bioengineering system for assessing children's cognitive development by computerized evaluation of shared intentionality. In: International Conference on Computational Science and Computational Intelligence (CSCI), Proceedings IEEE Xplore, Conference Location: Las Vegas, NV, USA (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Val Danilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Val Danilov, I. (2024). Shared Intentionality Before Birth: Emulating a Model of Mother-Fetus Communication for Developing Human-Machine Systems. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-031-47715-7_5

Download citation

Publish with us

Policies and ethics