Abstract
Numerous studies show the ability of fetuses for affective evaluation and sensitivity to the sounds and rhythms of other human presence. This shows an appearance of fetuses’ perception in intentional engagement with the environment. It means that fetuses are able to select the relevant stimulus from the noisy environment with a cacophony of other stimuli: chemical interactions, pressure changes, and electromagnetic fields. This ability can appear in ecological learning only. The theoretical study observes the literature to understand what environmental features of the mother-fetus communication model enable a fetus to interact with the mother in ecological training. The objective is to design Human-Machine Systems and, specifically, computer-aided Medical Diagnosis systems based on the mother-fetus communication model. The article proposes the physiological mechanism of shared intentionality that relies on the mother's heart pulsed electromagnetic field (PEMF) impact on the adenosine receptors in both organisms. The study creates the concept design for future research to provide evidence of the mother-fetus communication model and establish human-computer connectivity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zoia, S., et al.: Evidence of early development of action planning in the human foetus: a kinematic study. Exp. Brain Res. 176, 217–226 (2007)
Castiello, U., et al.: Wired to be social: the ontogeny of human interaction. PLoS ONE 5(10), e13199 (2010)
Sasaki, M., Yanagihara, T., Naitoh, N., Hata, T.: Four-dimensional sonographic assessment of inter-twin contact late in the first trimester. Int. J. Gynecol. Obstet. 108(2), 104–107 (2010)
Kisilevsky, B.C.: Fetal auditory processing: implications for language development? Fetal Development. Research on Brain and Behavior, Environmental Influences, and Emerging Technologies, pp. 133–152 (2016)
Hepper, P.G., Scott, D., Shahidullah, S.: Newborn and fetal response to maternal voice. J. Reprod. Infant Psychol. 11, 147–153 (1993)
Lee, G.Y.C., Kisilevsky, B.S.: Fetuses respond to father’s voice but prefer mother’s voice after birth. Dev. Psychobiol. 56, 1–11 (2014)
Krueger, C,A., Cave, E.C., Garvan, C.: Fetal response to live and recorded maternal speech. Biol. Res. Nurs. 17, 112–120 (2015)
Lecanuet, J.P., Granier-Deferre, C., Jacquet, A.Y., Capponi, I., Ledru, L.: Prenatal discrimination of a male and a female voice uttering the same sentence. Early Dev. Parent. 2(4), 217–228 (1993)
Hepper, P.: Behavior during the prenatal period: Adaptive for development and survival. Child Dev. Perspect. 9(1), 38–43 (2015). https://doi.org/10.1111/cdep.12104
Jardri, R., Houfflin-Debarge, V., Delion, P., Pruvo, J.-P., Thomas, P., Pins, D.: Assessing fetal response to maternal speech using a noninvasive functional brain imaging technique. Int. J. Dev. Neurosci. 30, 159–161 (2012). https://doi.org/10.1016/j.ijdevneu.2011.11.002
Thompson, E.: Mind in Life: Biology, Phenomenology, and the Sciences of Mind. Harvard University Press (2010), Sept 30
Varela, F.J.: Principles of Biological Autonomy (1979). ISBN-10:0135009502, ISBN- 13:978–0135009505
Bourgine, P., Varela, F.J.: Towards a practice of autonomous systems. In: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, vol. 1, pp. xi±xvii. MIT Press, Cambridge, MA (1992), 2 Apr 1992
Trevarthen, C., Delafield-Butt, J.: Development of consciousness. In: Hopkins, B., Geangu, E.., Linkenauger, S. (eds.) Cambridge Encyclopedia of Child Development, 2nd edn., pp. 821–835 (2017). Cambridge University Press, Cambridge. ISBN: 9781107103412. https://core.ac.uk/download/pdf/77034048.pdf. Accessed 02 Mar 2023
Searle, J.R.: The Rediscovery of the Mind. MITPress, London (1992)
Bargh, J.A.: Goal and intent: Goal-directed thought and behavior are often unintentional. Psychol. Inq. 1(3), 248–251 (1990)
Gregory, R.: “Perception” in Gregory, Zangwill, pp. 598–601 (1987)
Treisman, A.: Solutions to the binding problem: progress through controversy and convergence. Neuron 24(1), 105–125 (1999)
Tazerart, S., Mitchell, D.E., Miranda-Rottmann, S., Araya, R.: A spike-timing-dependent plasticity rule for dendritic spines. Nat. Commun. 11, 4276 (2020)
Feldman, D.E.: The spike-timing dependence of plasticity. Neuron 75, 556–571 (2012)
Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)
Debanne, D., Gahwiler, B.H., Thompson, S.M.: Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507, pp. 237–247 (1998)
Sjöström, P.J., Turrigiano, G.G., Nelson, S.B.: Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001)
Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A., Poo, M.M.: A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998)
Val Danilov, I.: Smartphone in detecting developmental disability in infancy: a theoretical approach to shared intentionality for assessment tool of cognitive decline and e-learning. In: Arai, K. (ed.) Proceedings of the SAI 2022, LNNS 508, pp. 1–11, 2022. Springer Nature Switzerland AG (2022). https://doi.org/10.1007/978-3-031-10467-1_19. Accessed 02 Mar 2023
Geangu, E., Benga, O., Stahl, D., Striano, T.: Contagious crying beyond the first days of life. Infant Behav. Dev. 33, 279–288 (2010)
Dondi, M., Simion, F., Caltran, G.: Can newborns discriminate between their own cry and the cry of another newborn infant? Dev. Psychol. 35, 418 (1999)
Martin, G.B., Clark, R.D.: Distress crying in neonates: Species and peer specificity. Dev. Psychol. 18, 3–9 (1982)
Sagi, A., Hoffman, M.L.: Empathic distress in the newborn. Dev. Psychol. 12, 175–176 (1976)
Simner, M.L.: Newborn’s response to the cry of another infant. Dev. Psychol. 5, 136–150 (1971)
Meltzoff, A.N.: Imitation and other minds: the ‘like me’ hypothesis. In: Hurley, S., Chater, N. (eds) Perspectives on Imitation: From Neuroscience to Social Science, vol. 2, pp. 55–78. MIT Press, Cambridge (2005)
Meltzoff, A.N., Moore, K.: Imitation of facial and manual gestures by human neonates. Science 198, 75–78 (1997)
Nagy, E., Pilling, K., Orvos, H., Molnar, P.: Imitation of tongue protrusion in human neonates: Specificity of the response in a large sample. Dev. Psychol. 49, 1628–1638 (2013)
Simpson, E.A., Murray, L., Paukner, A., Ferrari, P.F.: The mirror neuron system as revealed through neonatal imitation: presence from birth, predictive power and evidence of plasticity. Philosoph Trans R Soc B Biol Sci 369, 20130289 (2014)
Pascalis, O., de Schonen, S.: Recognition memory on 3- to 4-day-old human neonates. NeuroReport 5, 1721–1724 (1994)
Kelly, D.J., et al.: Cross-race preferences for same-race faces extend beyond the African versus caucasian contrast in 3-month-old infants. Infancy 11, 87–95 (2007)
Simion, F., Leo, I., Turati, C., Valenza, E., Dalla Barba, B.: How face specialization emerges in the first months of life. Progress Brain Res. 164, 169–85 (2007)
Goren, C.C., Sarty, M., Wu, P.Y.K.: Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56, 544–549 (1975)
Johnson, M.H., Dziurawiec, S., Ellis, H., Morton, J.: Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition 40, 1–19 (1991)
Quinn, P.C., Kelly, D.J., Lee, K., Pascalis, O., Slater, A.M.: Preference for attractive faces in human infants extends beyond conspecifics. Dev. Sci. 11, 76–83 (2008)
Bushnell, I.W.R.: Mother’s face recognition in newborn infants: Learning and memory. Infant Child Dev. Int. J. Res. Pract. 10, 67–74 (2001)
Bushnell, I.W.R., Sai, F., Mullin, J.T.: Neonatal recognition of the mother’s face. Br. J. Dev. Psychol. 7, 3–15 (1989)
Field, T.M., Cohen, D., Garcia, R., Greenberg, R.: Mother–stranger face discrimination by the newborn. Infant Behav. Dev. 7, 19–25 (1984)
Pascalis, O., de Schonen, S., Morton, J., Deruelle, C., Fabre-Grenet, M.: Mother’s face recognition in neonates: a replication and an extension. Infant Behav. Dev. 17, 79–85 (1995)
Val Danilov, I.: Social Interaction in Knowledge Acquisition: Advanced Curriculum. Critical Review of Studies Relevant to Social Behavior of Infants. Journal of Higher Education Theory and Practice, 20, 12 (2020)
Gopnik, A.: Index of authors. J. Child Lang. 8, 495–499 (1981)
Trevarthen, C.: Signs before speech. In: Sebeok, T.A., Umiker-Sebeok, J. (eds.) The Semiotic Web. De Gruyter Mouton, Berlin and Boston, pp. 689–756 (1989). https://doi.org/10.1515/9783110874099.689
Yingling, J.M.: Does that mean ‘no’? Negotiating proto-conversation in infant-caregiver pairs. Res. Lang. Soc. Interact. 24, 71–108 (1990). https://doi.org/10.1080/08351819009389333
Bråten, S., Manstead, A., Oatley, K. (eds.): Intersubjective Communication and Emotion in Early Ontogeny, No. 3. Cambridge University Press, Cambridge (1998)
Tomasello, M.: Becoming Human: A Theory of Ontogeny. Belknap Press of Harvard University Press, Harvard (2019). https://doi.org/10.4159/9780674988651
Gilbert, M.: On Social Facts. Routledge, New York (1989)
Tuomela, R.: The Importance of Us. SUP. Stanford University Press, Stanford, CA (1995)
Atmaca, S., Sebanz, N., Prinz, W., Knoblich, G.: Action co-representation: the joint SNARC effect. Soc. Neurosci. 3(3–4), 410–420 (2008). https://doi.org/10.1080/17470910801900908
Shteynberg, G., Galinsky, A.D.: Implicit coordination: sharing goals with similar others intensifies goal pursuit. J. Exp Soc Psychol 47(6), 1291–1294 (2011). ISSN 0022–1031. https://doi.org/10.1016/j.jesp.2011.04.012
Reddish, P., Fischer, R., Bulbulia, J.: Let’s dance together: synchrony, shared intentionality and cooperation. PLoS ONE 8(8), e71182 (2013). https://doi.org/10.1371/journal.pone.0071182
McClung, J.S., Placì, S., Bangerter, A., Clément, F., Bshary, R.: The language of cooperation: shared intentionality drives variation in helping as a function of group membership. Proc. R. Soc. B 284, 20171682 (2017). https://doi.org/10.1098/rspb.2017.1682
Tang, N., Gong, S., Zhao, M., Gu, C., Zhou, J., Shen, M., Gao, T.: Exploring an imagined “We” in human collective hunting: In: Joint Commitment within Shared Intentionality, Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 2022, pp. 44 (2022). https://escholarship.org/uc/item/3wj722pb
Val Danilov, I., Mihailova, S., Perepjolkina, V.: Unconscious social interaction, Coherent intelligence in Learning, Proceedings of the 12th Annual Conference ICERI Seville (Spain), pp. 2217–2222 (2019). https://doi.org/10.21125/iceri.2019.0606
Val Danilov, I., Mihailova, S., Svajyan, A.: Computerized assessment of cognitive development in neurotypical and neurodivergent children. OBM Neurobiol 6(3), 18 (2022). https://doi.org/10.21926/obm.neurobiol.2203137. https://www.lidsen.com/journals/neurobiology/neurobiology-06-03-137. Accessed 02 Mar 2023
Fishburn, F.A., et al.: Putting our heads together: interpersonal neural synchronization as a biological mechanism for shared intentionality. Soc. Cogn. Affect. Neurosci. 13(8), 841–849 (2018)
Astolfi, L., et al.: Neuroelectrical hyperscanning measures simultaneous brain activity in humans. Brain Topogr. 23, 243–256 (2010)
Szymanski, C., et al.: Teams on the same wavelength perform better: inter-brain phase synchronization constitutes a neural substrate for social facilitation. Neuroimage 152, 425–436 (2017)
Hu, Y., Pan, Y., Shi, X., Cai, Q., Li, X., Cheng, X.: Inter-brain synchrony and cooperation context in interactive decision making. Biol. Psychol. 133, 54–62 (2018)
Painter, D.R., Kim, J.J., Renton, A.I., Mattingley, J.B.: Joint control of visually guided actions involves concordant increases in behavioural and neural coupling. Commun. Biol. 29, 4(1), 1–5 (2021). https://doi.org/10.1038/s42003-021-02319-3
Val Danilov, I., Mihailova, S.: A new perspective on assessing cognition in children through estimating shared intentionality. J. Intell. 10, 21 (2022). https://doi.org/10.3390/jintelligence10020021
Val Danilov, I., Mihailova, S.: Neuronal coherence agent for shared intentionality: a hypothesis of neurobiological processes occurring during social interaction. OBM Neurobiol. 5(4), 26 (2021). https://doi.org/10.21926/obm.neurobiol.2104113
Val Danilov, I.: Advanced artificial intelligence in contactless human-computer systems through shared intentionality. In: Arai, K. (ed.) Advances in Information and Communication. FICC 2022. Lecture Notes in Networks and Systems, vol. 438. Springer, Cham. (2022). https://doi.org/10.1007/978-3-030-98012-2_54
Huang, M., Li, P., Chen, F., Cai, Z., Yang, S., Zheng, X., Li, W.: Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields. Cancer Med. (2022)
Barker, A.T., Jalinous, R., Freeston, I.L.: Non-invasive magnetic stimulation of human motor cortex. Lancet (London, England) 1(8437), 1106–1107 (1985). https://doi.org/10.1016/s0140-6736(85)92413-4
Frey, A.H.: Differential biologic effects of pulsed and continuous electromagnetic fields and mechanisms of effect. Ann. N. Y. Acad. Sci. 238, 273–279 (1974). https://doi.org/10.1111/j.1749-6632.1974.tb26796.x
Liboff, A.R., Jenrow, K.A.: Physical mechanisms in neuroelectromagnetic therapies. NeuroRehabilitation 17(1), 9–22 (2002)
Larsen, E.R., Licht, R.W., Nielsen, R.E., et al.: Transcranial pulsed electromagnetic fields for treatment-resistant depression: a multicenter 8-week single-arm cohort study. Eur. Psychiatry 63(1), e18 (2020). https://doi.org/10.1192/j.eurpsy.2020.3
Bagnato, G.L., Miceli, G., Marino, N., Sciortino, D., Bagnato, G.F.: Pulsed electromagnetic fields in knee osteoarthritis: a double blind, placebo-controlled, randomized clinical trial. Rheumatology (Oxford) 55(4), 755–762 (2016). https://doi.org/10.1093/rheumatology/kev426
Ross, C.L., Ang, D.C., Almeida-Porada, G.: Targeting mesenchymal stromal cells/pericytes (MSCs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis. Front. Immunol. 10, 266 (2019). https://doi.org/10.3389/fimmu.2019.00266
Marmotti, A., Peretti, G.M., Mattia, S., et al.: Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: a potential strategy for tendon repair-an in vitro study. Stem Cells Int. 2018, 9048237 (2018). https://doi.org/10.1155/2018/9048237
Callaghan, M.J., Chang, E.I., Seiser, N., et al.: Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast. Reconstr. Surg. 121(1), 130–141 (2008). https://doi.org/10.1097/01.prs.0000293761.27219.84
Cameron, I.L., Markov, M.S., Hardman, W.E.: Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity. Cancer Cell. Int.;14(1), 125 (2014). https://doi.org/10.1186/s12935-014-0125-5
Gessi, S., et al.: Pulsed electromagnetic field and relief of hypoxia-induced neuronal cell death: the signaling pathway. J. Cell. Physiol. 234(9), 15089–15097 (2019)
Robertson, J.A., Théberge, J., Weller, J., Drost, D.J., Prato, F.S., Thomas, A.W.: Low-frequency pulsed electromagnetic field exposure can alter neuroprocessing in humans. J. R. Soc. Interface. 7(44), 467–473 (2010)
Premi, E., et al.: Modulation of long-term potentiation-like cortical plasticity in the healthy brain with low frequency-pulsed electromagnetic fields. BMC Neurosci. 19, 1–6 (2018)
Ribeiro, J.A., Sebastião, A.M., de Mendonça, A.: Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol. 68(6), 377–392 (2002). https://doi.org/10.1016/s0301-0082(02)00155-7. PMID: 12576292
Sebastião, A,M,, Ribeiro, J.A.: Adenosine receptors and the central nervous system. Handb. Exp. Pharmacol. 193, 471–534 (2009). https://doi.org/10.1007/978-3-540-89615-9_16. PMID: 19639292
Varani, K., et al.: Effect of pulsed electromagnetic field exposure on adenosine receptors in rat brain. Bioelectromagnetics 33(4), 279–287 (2012)
Ilori, A., Gbadamosi, O.: Measurement and evaluation of extremely low frequency (Radiation) from computer monitors and laptops. Int. J. Sci. Technoledge 6(3), 73–80 (2018)
McCraty, R.: Science of the Heart, Exploring the Role of the Heart in Human, vol. 2. HeartMath Institute, Boulder Creek (2015). ISBN 978-1-5136-0636-1 Paperback
Baule, G., McFee, R.: Theory of magnetic detection of the heart’s electrical activity. J. Appl. Phys. 36(6), 2066–2073 (1965)
Hart, G.: Biomagnetometry: imaging the heart’s magnetic field. Br. Heart J. 65(2), 61–62 (1991). https://doi.org/10.1136/hrt.65.2.61
McCraty, R., Atkinson, M., Tomasino, D., Tiller, W.A.: The electricity of touch: detection and measurement of cardiac energy exchange between people. In: Brain and Values, pp. 359–379. Psychology Press (2018)
Kadic, A.S., Kurjak, A.: Cognitive functions of the fetus. Ultraschall Med. 38, 181–189 (2017)
Val Danilov, I.: A bioengineering system for assessing children's cognitive development by computerized evaluation of shared intentionality. In: International Conference on Computational Science and Computational Intelligence (CSCI), Proceedings IEEE Xplore, Conference Location: Las Vegas, NV, USA (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Val Danilov, I. (2024). Shared Intentionality Before Birth: Emulating a Model of Mother-Fetus Communication for Developing Human-Machine Systems. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-031-47715-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-47715-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47714-0
Online ISBN: 978-3-031-47715-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)