Android Malware Detection Using Machine Learning: A Review | SpringerLink
Skip to main content

Android Malware Detection Using Machine Learning: A Review

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 824))

Included in the following conference series:

  • 488 Accesses

Abstract

Malware for Android is becoming increasingly dangerous to the safety of mobile devices and the data they hold. Although machine learning (ML) techniques have been shown to be effective at detecting malware for Android, a comprehensive analysis of the methods used is required. We review the current state of Android malware detection using machine learning in this paper. We begin by providing an overview of Android malware and the security issues it causes. Then, we look at the various supervised, unsupervised, and deep learning, machine learning approaches that have been utilized for Android malware detection. Additionally, we present a comparison of the performance of various Android malware detection methods and talk about the performance evaluation metrics that are utilized to evaluate their efficacy. Finally, we draw attention to the drawbacks and difficulties of the methods that are currently in use and suggest possible future directions for research in this area. In addition to providing insights into the current state of Android malware detection using machine learning, our review provides a comprehensive overview of the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 32889
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mahindru, A., Sangal, A.L.: MLDroid-framework for Android malware detection using machine learning techniques. Neural Comput. Appl. 33, 5183–5240 (2021)

    Article  Google Scholar 

  2. Mahindru, A., Singh, P.: Dynamic permissions based android malware detection using machine learning techniques. In: Proceedings of the 10th Innovations in Software Engineering Conference (ISEC ’17). Association for Computing Machinery, New York, NY, USA, pp. 202–210 (2017). https://doi.org/10.1145/3021460.3021485

  3. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting malicious apps in official and alternative Android markets. In: Proceedings of the 19th Annual Network & Distributed System Security Symposium (2012)

    Google Scholar 

  4. Zhou, Y., Jiang, X.: Dissecting android Malware: characterization and evolution security and privacy (SP). In: 2012 IEEE Symposium on Security and Privacy (2012)

    Google Scholar 

  5. Cheng, J., Wong, S.H., Yang, H., Lu, S.: SmartSiren: virus detection and alert for smartphones. In: International Conference on Mobile Systems, Applications, and Services (MobiSys) (2007)

    Google Scholar 

  6. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G., Alvarez, G.: PUMA: permission usage to detect Malware in Android. In: Advances in Intelligent Systems and Computing (AISC) (2012)

    Google Scholar 

  7. Wang, J., Deng, P., Fan, Y., Jaw, L., Liu, Y.: Virus detection using data mining techniques. In: Proceedings of IEEE International Conference on Data Mining (2003)

    Google Scholar 

  8. Chen, X., Andersen, J., Mao, Z., Bailey, M., Nazario, J.: Towards an understanding of anti-virtualization and anti-debugging behavior in modern malware. In: DSN (2008)

    Google Scholar 

  9. Jidigam, R.K., Austin, T.H., Stamp, M.: Singular value decomposition and metamorphic detection. J. Comput. Virol. Hacking Tech. 11(4), 203–216 (2014). https://doi.org/10.1007/s11416-014-0220-0

    Article  Google Scholar 

  10. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-optimal malware specifications from suspicious behaviors. In: SP 2010 Proceedings of the 2010 IEEE Symposium on Security and Privacy, pp. 45–60 (2010)

    Google Scholar 

  11. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effective and efficient malware detection at the end host. In: USENIX Security (2009)

    Google Scholar 

  12. Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: AccessMiner: using system-centric models for malware protection. In: CCS (2010)

    Google Scholar 

  13. Arai, K., Bhatia, R. (eds.): FICC 2019. LNNS, vol. 70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-12385-7

  14. Chowdhury, M.N.-U.-R., Alahy, Q.E., Soliman, H.: Advanced android malware detection utilizing API calls and permissions. In: Kim, H., Kim, K.J. (eds.) IT Convergence and Security. LNEE, vol. 782, pp. 123–134. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-4118-3_12

  15. Lu, T., Du, Y., Ouyang, L., Chen, Q., Wang, X.: Android malware detection based on a hybrid deep learning model. Secur. Commun. Netw. 2020, Article ID 8863617, 11 p. (2020)

    Google Scholar 

  16. Kim, J., Ban, Y., Ko, E., et al.: MAPAS: a practical deep learning-based android malware detection system. Int. J. Inf. Secur. 21, 725–738 (2022)

    Article  Google Scholar 

  17. MARVIN: Efficient and Comprehensive Mobile App Classification through Static and Dynamic Analysis

    Google Scholar 

  18. Virus Total. http://www.virustotal.com/gui/graph-overview

  19. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting malicious apps in official and alternative Android markets. In: Proceedings of the 19th Annual Network & Distributed System Security Symposium (2012)

    Google Scholar 

  20. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution security and privacy (SP). In: 2012 IEEE Symposium on Security and Privacy

    Google Scholar 

  21. Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H., Rieck, K.: Drebin: efficient and explainable detection of android malware in your pocket. In: 21st Annual Network and Distributed System Security Symposium (NDSS) (2014)

    Google Scholar 

  22. Allix, K., Bissyandé, T.F., Klein, J., Traon, Y.L.: AndroZoo: collecting millions of android apps for the research community. In: 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), Austin, TX, USA, pp. 468–471 (2016)

    Google Scholar 

  23. http://virusshare.com/

  24. Liu, Z., Wang, R., Japkowicz, N., Tang, D., Zhang, W., Zhao, J.: Research on unsupervised feature learning for Android malware detection based on restricted Boltzmann machines. Future Gener. Comput. Syst. 120, pp. 91–108 (2021). ISSN 0167–739X. https://doi.org/10.1016/j.future.2021.02.015

  25. Liu, Z.-L., Yang, M., Chen, X., Luo, Y., Zhang, H.: An android malware detection model based on DT-SVM. Secur. Commun. Netw. (2020). https://doi.org/10.1155/2020/8841233

  26. AlJarrah, M.N., Yaseen, Q.M., Mustafa, A.M.: a context-aware android malware detection approach using machine learning. Information 13(12), 563 (2022). https://doi.org/10.3390/info13120563

  27. Jeon, S., Moon, J.: Malware-detection method with a convolutional recurrent neural network using opcode sequences. Inf. Sci. 535, 1–15 (2020). ISSN 0020–0255. https://doi.org/10.1016/j.ins.2020.05.026

  28. Lee, J., Jang, H., Ha, S., Yoon, Y.: Android malware detection using machine learning with feature selection based on the genetic algorithm. Mathematics. 9(21), 2813 (2021). https://doi.org/10.3390/math9212813

    Article  Google Scholar 

  29. Kwon, H.-Y., Kim, T., Lee, M.-K.: Advanced intrusion detection combining signature-based and behavior-based detection methods. Electronics 11(6), 867 (2022). https://doi.org/10.3390/electronics11060867

    Article  Google Scholar 

  30. Pulver, A., Lyu, S.: LSTM with working memory. In: 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, pp. 845–851. https://doi.org/10.1109/IJCNN.2017.7965940

  31. Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8(1), 1–74 (2021). https://doi.org/10.1186/s40537-021-00444-8

    Article  Google Scholar 

  32. Yahya, A.E., Gharbi, A., Yafooz, W.M.S., Al-Dhaqm, A.: A novel hybrid deep learning model for detecting and classifying non-functional requirements of mobile apps issues. Electronics 12(5), 1258 (2023). https://doi.org/10.3390/electronics12051258

    Article  Google Scholar 

  33. Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., Liu, H.: A review of android malware detection approaches based on machine learning. IEEE Access 8, 124579–124607 (2020). https://doi.org/10.1109/ACCESS.2020.3006143

    Article  Google Scholar 

  34. Cheng, J., Wong, S.H., Yang, H., Lu, S.: SmartSiren: virus detection and alert for smartphones. In: Proceedings of the 5th international conference on Mobile systems, applications and services (MobiSys ’07). Association for Computing Machinery, New York, NY, USA, pp. 258–271 (2007). https://doi.org/10.1145/1247660.1247690

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naseef-Ur-Rahman Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chowdhury, NUR., Haque, A., Soliman, H., Hossen, M.S., Fatima, T., Ahmed, I. (2024). Android Malware Detection Using Machine Learning: A Review. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-031-47715-7_35

Download citation

Publish with us

Policies and ethics