Estimating the Tendency of Social Media Users to Spread Fake News | SpringerLink
Skip to main content

Estimating the Tendency of Social Media Users to Spread Fake News

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 824))

Included in the following conference series:

  • 388 Accesses

Abstract

The unique characteristics of social media, such as popularity, ubiquitousness, and inadequate supervision, make it a perfect medium for fake news propagation. While users play a critical role in this propagation, not all of them have the same level of impact and involvement. Identifying the news-sharing behaviors of different users and predicting them automatically can be a leading step toward detecting fake news and understanding the factors that contribute to its spread. Previous attempts to detect fake news spreaders have focused on binary classification, assuming users as either spreaders or non-spreaders of fake news. To address this oversimplification, we propose estimating users’ tendency to spread fake news by introducing a metric that represents the degree of users’ propensity to spread misinformation. Our provided approach is a supervised regression model utilizing text-based features extracted from users’ writings on social media. We created and annotated a new dataset based on FakeNewsNet, a popular data repository on fake news detection, to train our model and conduct our experiments. In our experiments, we establish the practicality of our approach by achieving a Root Mean Squared Error (RMSE) of 0.26, using a range of values from 0 to 1 to represent users’ inclination to spread fake news. We also demonstrate that utilizing text-based features leads to better performance than using explicit features directly provided by social media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 32889
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the rest of the paper, we use “TSFN” abbreviation as a short term for Tendency to Spread Fake News and “TSFN score” as the variable we introduced to represent users’ tendency to spread fake news.

  2. 2.

    The code for downloading the FakeNewsNet repository can be found in the following link: https://github.com/KaiDMML/FakeNewsNet.

  3. 3.

    PolitiFact and GossipCop are two fact-checking websites with the following web addresses: https://www.politifact.com/ and https://www.gossipcop.com/.

References

  1. News use across social media platforms in 2020 (2022)

    Google Scholar 

  2. Agarwal, R., Gupta, S., Chatterjee, N.: Profiling fake news spreaders on twitter: a clickbait and linguistic feature based scheme. In: International Conference on Applications of Natural Language to Information Systems, pp. 345–357. Springer (2022)

    Google Scholar 

  3. Aragón, M.E., Jarquín-Vásquez, H.J., Montes-y Gómez, M., Escalante, H.J., Pineda, L.V., Gómez-Adorno, H., Posadas-Durán, J.P., Bel-Enguix, G.: Overview of mex-a3t at iberlef 2020: fake news and aggressiveness analysis in mexican spanish. In: IberLEF@ SEPLN, pp. 222–235 (2020)

    Google Scholar 

  4. Bai, S., Zhu, T., Cheng, L.: Big-five personality prediction based on user behaviors at social network sites (2012). arXiv-1204

    Google Scholar 

  5. Bird, S., Loper, E., Klein, E.: Natural Language Processing with Python. O’Reilly Media Inc (2009)

    Google Scholar 

  6. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, WWW ’11, pp. 675–684. Association for Computing Machinery (2011)

    Google Scholar 

  7. Tredici, M.D., Fernández, R.: Words are the window to the soul: language-based user representations for fake news detection. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 5467–5479, Barcelona, Spain (Online) (2020). International Committee on Computational Linguistics

    Google Scholar 

  8. Ghanem, B., Ponzetto, S.P., Rosso, P.: Factweet: profiling fake news twitter accounts. In: International Conference on Statistical Language and Speech Processing, pp. 35–45. Springer (2020)

    Google Scholar 

  9. Giachanou, A., Ghanem, B., Ríssola, E.A., Rosso, P., Crestani, F., Oberski, D.: The impact of psycholinguistic patterns in discriminating between fake news spreaders and fact checkers. Data & Knowl. Eng. 138, 101960 (2022)

    Article  Google Scholar 

  10. Giachanou, A., Ríssola, E.A., Ghanem, B., Crestani, F., Rosso, P.: The role of personality and linguistic patterns in discriminating between fake news spreaders and fact checkers. In: International Conference on Applications of Natural Language to Information Systems, pp. 181–192. Springer (2020)

    Google Scholar 

  11. Giachanou, A., Rosso, P., Crestani, F.: The impact of emotional signals on credibility assessment. J. Assoc. Inf. Sci. Technol. 1–16 (2021)

    Google Scholar 

  12. Heydari, A., ali Tavakoli, M., Salim, N., Heydari, Z.: Detection of review spam: a survey. Expert Syst. Appl. 42(7), 3634–3642 (2015)

    Google Scholar 

  13. Honnibal, M., Montani, I.: spaCy2: natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing (2017)

    Google Scholar 

  14. Jwa, H., Oh, D., Park, K., Kang, J.M., Lim, H.: exbake: automatic fake news detection model based on bidirectional encoder representations from transformers (bert). Appl. Sci. 9(19), 4062 (2019)

    Article  Google Scholar 

  15. Kaliyar, R.K., Goswami, A., Narang, P.: Fakebert: fake news detection in social media with a bert-based deep learning approach. Multimedia Tools Appl. 80(8), 11765–11788 (2021)

    Article  Google Scholar 

  16. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R. News 2(3), 18–22 (2002)

    Google Scholar 

  17. Minka, T.: Automatic choice of dimensionality for pca. Adv. Neural. Inf. Process. Syst. 13, 598–604 (2000)

    Google Scholar 

  18. Yida, M., Aletras, N.: Identifying twitter users who repost unreliable news sources with linguistic information. Peer J. Comput. Sci. 6, e325 (2020)

    Article  Google Scholar 

  19. Oshikawa, R., Qian, J., Wang, W.Y.: A survey on natural language processing for fake news detection. In: Proceedings of The 12th Language Resources and Evaluation Conference, pp. 6086–6093 (2020)

    Google Scholar 

  20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  21. Pérez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of fake news. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3391–3401. Association for Computational Linguistics (2018)

    Google Scholar 

  22. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., Stein, B.: A stylometric inquiry into hyperpartisan and fake news (2017). arXiv:1702.05638

  23. Rangel, F., Giachanou, A., Ghanem, B., Rosso, P.: Overview of the 8th author profiling task at PAN 2020: profiling fake news spreaders on Twitter. In: Cappellato, L., Eickhoff, C., Ferro, N., Névéol, A. (eds.), CLEF 2020 Labs and Workshops, Notebook Papers. CEUR-WS.org, September (2020)

    Google Scholar 

  24. Rangel, F., Rosso, P.: On the impact of emotions on author profiling. Inf. Proc. & Manag. 52(1), 73–92 (2016)

    Article  Google Scholar 

  25. Rissola, E.A., Bahrainian, S.A., Crestani, F.: Personality recognition in conversations using capsule neural networks. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 180–187 (2019)

    Google Scholar 

  26. Saha, T., Upadhyaya, A., Saha, S., Bhattacharyya, P.: A multitask multimodal ensemble model for sentiment-and emotion-aided tweet act classification. IEEE Trans. Comput. Soc. Syst. 1–10 (2021)

    Google Scholar 

  27. Saif, M.: Word affect intensities. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association (ELRA) (2018)

    Google Scholar 

  28. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: Fakenewsnet: a data repository with news content, social context, and spatiotemporal information for studying fake news on social media. Big Data 8(3), 171–188 (2020)

    Article  Google Scholar 

  29. Shu, K., Zhou, X., Wang, S., Zafarani, R., Liu, H.: The role of user profiles for fake news detection. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 436–439 (2019)

    Google Scholar 

  30. Varma, R., Verma, Y., Vijayvargiya, P., Churi, P.P.: A systematic survey on deep learning and machine learning approaches of fake news detection in the pre-and post-covid-19 pandemic. Int. J. Intell. Comput. Cybern (2021)

    Google Scholar 

  31. Vo, N., Lee, K.: Learning from fact-checkers: analysis and generation of fact-checking language. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’19, pp. 335–344 (2019)

    Google Scholar 

  32. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

  33. Zaizar-Gutiérrez, D., Fajardo-Delgado, D., Carmona, M.A.A.: Itcg’s participation at mex-a3t 2020: aggressive identification and fake news detection based on textual features for mexican spanish. In: IberLEF@ SEPLN, pp. 258–264 (2020)

    Google Scholar 

  34. Zhang, J., Cui, L., Fu, Y., Gouza, F.B.: Fake news detection with deep diffusive network model (2018). arXiv:1805.08751

  35. Zhou, X., Zafarani, R.: Network-based fake news detection: a pattern-driven approach. ACM SIGKDD Explor. Newsl. 21(2), 48–60 (2019)

    Article  Google Scholar 

  36. Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection methods, and opportunities. ACM Comput. Surv. (CSUR) 53(5), 1–40 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Hashemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hashemi, A., Shi, W., Moosavi, M.R., Giachanou, A. (2024). Estimating the Tendency of Social Media Users to Spread Fake News. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-031-47715-7_26

Download citation

Publish with us

Policies and ethics