Abstract
Eye blinking has been studied extensively due to its wide range of potential applications. However, one under-researched field is the use of the wider lacrimal area for detection. This paper proposes a new eye blinking detection method using a novel lacrimal aspect ratio (LAR) strategy that utilises eyebrow movement and eyes. The proposed algorithm estimates facial landmarks using an automatic facial landmark detector to extract a single scalar quantity by using LAR and characterizing eye opening and closing, and to detect both partial and full blinking in each frame using a LAR threshold. We set three threshold values, –2.4 and –2.6, and –2.9, to detect blinks by each frame. Experimental results show that our approach successfully detects eye blinks and can outperform other state-of-the-art works. The utilization of LAR in detecting blinks and partial blinks demonstrates its potential to offer a novel and informative metric for researchers. This approach also opens up possibilities for further eye-related investigations, including the recognition of emotions. With its low dimensionality and easily understandable time domain features, LAR provides an effective pathway towards achieving these goals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adireddi, V.S., Boddeda, C.N.S.J., Kumpatla, D.S., Mantri, C.D., Reddy, B.D., Geetha, G., Thirupathi Rao, N., Bhattacharyya, D.:. Detection of eye blink using svm classifier. In: Smart Technologies in Data Science and Communication: Proceedings of SMART-DSC 2022, pp. 171–178. Springer (2023)
Adireddi, V.S., Boddeda, C.N.S.J., Kumpatla, D.S., Mantri, C.D., Dinesh Reddy, B., Geetha, G., Thirupathi Rao, N., Bhattacharyya, D.: Detection of eye blink using svm classifier. In: Ogudo, K.A., Saha, S.K., Bhattacharyya, D. (eds.) Smart Technologies in Data Science and Communication, pp. 171–178. Springer Nature Singapore, Singapore (2023)
Akhdan, S.R., Supriyanti, R., Nugroho, A.S.: Face recognition with anti spoofing eye blink detection. In: AIP Conference Proceedings, vol. 2482, no. 1, pp. 020006 (2023)
Al-gawwam, S., Benaissa, M.: Robust eye blink detection based on eye landmarks and savitzky-golay filtering. Information 9(4), 93 (2018)
Anas, E.R., Henriquez, P., Matuszewski, B.J., et al.: Online eye status detection in the wild with convolutional neural networks. In: VISIGRAPP (6: VISAPP), pp. 88–95 (2017)
Bergasa, L.M., Nuevo, J., Sotelo, M.A., Barea, R., Elena Lopez, M.: Real-time system for monitoring driver vigilance. IEEE Trans. Intell. Transp. Syst. 7(1), 63–77 (2006)
Borza, D., Itu, R., Danescu, R.: In the eye of the deceiver: analyzing eye movements as a cue to deception. J. Imaging 4(10), 120 (2018)
Chollet F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
Chu, C.-H., Feng, Y.-K.: Study of eye blinking to improve face recognition for screen unlock on mobile devices. J. Electric. Eng. Technol. 13(2), 953–960 (2018)
Cori, J.M., Turner, S., Westlake, J., Naqvi, A., Ftouni, S., Wilkinson, V., Vakulin, A., O’Donoghue, F.J., Howard, M.E.: Eye blink parameters to indicate drowsiness during naturalistic driving in participants with obstructive sleep apnea: a pilot study. Sleep Health 7(5), 644–651 (2021)
Cortacero, K., Fischer, T., Demiris, Y.: Rt-bene: a dataset and baselines for real-time blink estimation in natural environments. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0 (2019)
Cortacero, K., Fischer, T., Demiris, Y.: Rt-bene: a dataset and baselines for real-time blink estimation in natural environments. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops (Oct 2019)
Dari, S., Epple, N., Protschky, V.: Unsupervised blink detection and driver drowsiness metrics on naturalistic driving data. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6. IEEE (2020)
de Lima Medeiros, P.A., da Silva, G.V.S., dos Santos Fernandes, F.R., Sánchez-Gendriz, I., Castro Lins, H.W., da Silva Barros, D.M., Pinto Nagem, D.A., de Medeiros Valentim, R.A.: Efficient machine learning approach for volunteer eye-blink detection in real-time using webcam. Expert Syst. Appl. 188, 116073 (2022)
Dewi, C., Chen, R.-C., Jiang, X., Hui, Yu.: Adjusting eye aspect ratio for strong eye blink detection based on facial landmarks. PeerJ Comput. Sci. 8, e943 (2022)
Drutarovsky, T., Fogelton, A.: Eye blink detection using variance of motion vectors. In: European Conference on Computer Vision, pp. 436–448. Springer (2014)
Fogelton, A., Benesova, W.: Eye blink detection based on motion vectors analysis. Comput. Vis. Image Underst. 148, 23–33 (2016)
Ghaziuddin, N., Nassiri, A., Miles, J.H.: Catatonia in down syndrome; a treatable cause of regression. Neuropsychiatr. Dis. Treat. 11, 941 (2015)
Ghosh, R., Phadikar, S., Deb, N., Sinha, N., Das, P., Ghaderpour, E.: Automatic eye-blink and muscular artifact detection and removal from eeg signals using k-nearest neighbour classifier and long short-term memory networks. IEEE Sens. J. (2023)
Grice, S.J., Halit, H., Farroni, T., Baron-Cohen, S., Bolton, P., Johnson, M.H.: Neural correlates of eye-gaze detection in young children with autism. Cortex 41(3), 342–353 (2005)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hutamaputra, W., Utaminingrum, F., Setia Budi, A.: Eye gaze for menu display selection on smart wheelchair using k-nearest neighbors method. In: AIP Conference Proceedings, vol. 2609, pp. 040009. AIP Publishing LLC (2023)
Hutamaputra, W., Utaminingrum, F., Setia Budi, A., Ogata, K.: Eyes gaze detection based on multiprocess of ratio parameters for smart wheelchair menu selection in different screen size. J. Vis. Commun. Image Represent. 103756 (2023)
Ibrahim, B.R., Khalifa, F.M., Zeebaree, S.R.M., Othman, N.A., Alkhayyat, A., Zebari, R.R., Sadeeq, M.A.M.: Embedded system for eye blink detection using machine learning technique. In: 2021 1st Babylon International Conference on Information Technology and Science (BICITS), pp. 58–62. IEEE (2021)
Isler, J.R., Pini, N., Lucchini, M., Shuffrey, L.C., Morales, S., Bowers, M.E., Leach, S.C., Sania, A., Wang, L., Condon, C., et al.: Longitudinal characterization of eeg power spectra during eyes open and eyes closed conditions in children. Psychophysiology, e14158 (2023)
Jang, J., Lew, H.: Blink index as a response predictor of blepharospasm to botulinum neurotoxin-a treatment. Brain Behav. 11(11), e2374 (2021)
Jordan, A.A., Pegatoquet, A., Castagnetti, A., Raybaut, J., Coz, P.L.: Deep learning for eye blink detection implemented at the edge. IEEE Embed. Syst. Lett. 13(3), 130–133 (2020)
Kashkouli, M.B., Abdolalizadeh, P., Abolfathzadeh, N., Sianati, H., Sharepour, M., Hadi, Y.: Periorbital facial rejuvenation; applied anatomy and pre-operative assessment. J. Curr. Ophthalmol. 29(3), 154–168 (2017)
King, D.E.: Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)
Kraft, D., Hartmann, F., Bieber, G.: Camera-based blink detection using 3d-landmarks. In: Proceedings of the 7th International Workshop on Sensor-based Activity Recognition and Artificial Intelligence, pp. 1–7 (2022)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)
Królak, A., Strumillo, P.: Eye-blink detection system for human-computer interaction. Univers. Access Inf. Soc. 11, 1–11 (2011)
Liang, R., Song, Q.: Blink detection and duration estimation by using adaptive threshold with considering individual difference. In: 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 1116–1121. IEEE (2021)
Mackert, A., Woyth, C., Flechtner, K.-M., Volz, H.-P.: Increased blink rate in drug-naive acute schizophrenic patients. Biol. Psychiat. 27(11), 1197–1202 (1990)
Malaspina, D., Coleman, E., Goetz, R.R., Harkavy-Friedman, J., Corcoran, C., Amador, X., Yale, S., Gorman, J.M.: Odor identification, eye tracking and deficit syndrome schizophrenia. Biol. Psychiatry 51(10), 809–815 (2002)
Moharana, L., Das, N., Nayak, S., Routray, A.: Video based eye blink analysis for psychological state determination. Intell. Dec. Technol. (Preprint), 1–10 (2021)
Patel, B.C., Anderson, R.L.: Blepharospasm and related facial movement disorders. Curr. Opin. Ophthalmol. 6(5), 86–99 (1995)
Phuong, T.T., Hien, L.T., Vinh, N.D., et al.: An eye blink detection technique in video surveillance based on eye aspect ratio. In: 2022 24th International Conference on Advanced Communication Technology (ICACT), pp. 534–538. IEEE (2022)
Radlak, K., Smolka, B.: Blink detection based on the weighted gradient descriptor. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013, pp. 691–700. Springer (2013)
Rahman, A., Sirshar, M., Khan, A.: Real time drowsiness detection using eye blink monitoring. In: 2015 National software engineering conference (NSEC), pp. 1–7. IEEE (2015)
Rakshita, R.: Communication through real-time video oculography using face landmark detection. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 1094–1098. IEEE (2018)
Sangeetha, J.: Deep learning architecture for a real-time driver safety drowsiness detection system. In: Handbook of Research on Computer Vision and Image Processing in the Deep Learning Era, pp. 29–41. IGI Global (2023)
Soleymani, M., Pantic, M., Pun, T.: Multimodal emotion recognition in response to videos. IEEE Trans. Affect. Comput. 3(2), 211–223 (2011)
Soukupova, T., Cech, J.: Eye blink detection using facial landmarks. In: 21st computer vision winter workshop, Rimske Toplice, Slovenia (2016)
Sridharan, S., Soundar, S., et al.: Assistive technology to communicate through eye blinks-a deep learning approach. Int. J. Comput. Digit. Syst. 11(1), 831–839 (2022)
Sugawara, E., Nikaido, H.: Properties of adeabc and adeijk efflux systems of acinetobacter baumannii compared with those of the acrab-tolc system of escherichia coli. Antimicrob. Agents Chemother. 58(12), 7250–7257 (2014)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9 (2015)
Wang, D, Amoozgar, B., Porco, T., Wang, Z., Lin, S.C.: Ethnic differences in lens parameters measured by ocular biometry in a cataract surgery population. PloS one 12(6), e0179836 (2017)
Wang, L., Ann Alexander, C.: Machine learning in big data. Int. J. Math. Eng. Manag. Sci. 1(2), 52–61 (2016)
Yi, Y., Zhang, H., Zhang, W., Yuan, Y., Li, C.: Fatigue working detection based on facial multi-feature fusion. IEEE Sens. J. (2023)
You, F., Li, X., Gong, Y., Wang, H., Li, H.: A real-time driving drowsiness detection algorithm with individual differences consideration. IEEE Access 7, 179396–179408 (2019)
Yuli Cristanti, R., Sigit, R.,Harsono, T., Adelina, D.C., Nabilah, A., Anggraeni, N.P.: Eye gaze tracking to operate android-based communication helper application. In: 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), pp. 89–94 (2017)
Zhang, H., Wang, X., Ren, W., Noack, B.R., Liu, H.: Improving the reliability of gaze estimation through cross-dataset multi-task learning. In: 2022 International Conference on High Performance Big Data and Intelligent Systems (HDIS), pp. 202–206. IEEE (2022)
Zhao, C., Gao, Z., Wang, Q., Xiao, K., Mo, Z., Jamal Deen, M.: Fedsup: a communication-efficient federated learning fatigue driving behaviors supervision approach. Future Gener. Comput. Syst. 138, 52–60 (2023)
Zhuang, Z., Landsittel, D., Benson, S., Roberge, R., Shaffer, R.: Facial anthropometric differences among gender, ethnicity, and age groups. Ann. Occup. Hyg. 54(4), 391–402 (2010)
Zwaard, S., Boele, H.-J., Alers, H., Strydis, C., Lew-Williams, C., Al-Ars, Z.: Privacy-preserving object detection & localization using distributed machine learning: a case study of infant eyeblink conditioning (2020). arXiv:2010.07259
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ayoub, M., Abel, A., Zhang, H. (2024). Optimization of Lacrimal Aspect Ratio for Explainable Eye Blinking. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-031-47715-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-47715-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47714-0
Online ISBN: 978-3-031-47715-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)