Mining Argument Components in Essays at Different Levels | SpringerLink
Skip to main content

Mining Argument Components in Essays at Different Levels

  • Conference paper
  • First Online:
AIxIA 2023 – Advances in Artificial Intelligence (AIxIA 2023)

Abstract

The research of arguments in student essays has long been the subject of automatic approaches to argument mining. The task has been mostly modeled as a sequence tagging problem, where the text is either analyzed in its entirety or split into smaller homogeneous units, such as sentences or paragraphs. However, previous research has highlighted how the various essay sections may fulfill different functions, and thereby how the position of specific argument components obeys precise structural dependency criteria. Based on such underpinning we propose an approach that exploits such structural information: in this work we present a hybrid training approach that takes into account the specific structural components of the essays, in order to be able to mine different types of argument components at different levels. Our hybrid approach achieves an improvement over essay-level and paragraph-level training, in particular in the extraction of some specific argument components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Experiments were performed on machinery provided by the Competence Centre for Scientific Computing [2]; nodes employed were equipped with 8VCPU, 1x NVIDIA Tesla T4 GPU and 64GB Memory. Running experiments with LONGFORMER took 11.5 h to complete 15 epochs at essay-level, while BERT only took 4 h. At paragraph-level instead, LONGFORMER took 28 h, BERT 9.5.

References

  1. Accuosto, P., Saggion, H.: Mining arguments in scientific abstracts with discourse-level embeddings. Data Knowl. Eng. 129, 101840 (2020)

    Article  Google Scholar 

  2. Aldinucci, M., Bagnasco, S., Lusso, S., Pasteris, P., Rabellino, S., Vallero, S.: OCCAM: a flexible, multi-purpose and extendable HPC cluster. J. Phys: Conf. Ser. 898(8), 082039 (2017)

    Google Scholar 

  3. Alhindi, T., Ghosh, D.: Sharks are not the threat humans are: argument component segmentation in school student essays. arXiv preprint arXiv:2103.04518 (2021)

  4. Bao, J., Fan, C., Wu, J., Dang, Y., Du, J., Xu, R.: A neural transition-based model for argumentation mining. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6354–6364 (2021)

    Google Scholar 

  5. Basile, P., Basile, V., Cabrio, E., Villata, S.: Argument mining on Italian news blogs. In: Third Italian Conference on Computational Linguistics (CLiC-it 2016) & Fifth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2016) (2016)

    Google Scholar 

  6. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: the long-document transformer. arXiv preprint arXiv:2004.05150 (2020)

  7. Bentahar, J., Moulin, B., Bélanger, M.: A taxonomy of argumentation models used for knowledge representation. Artif. Intell. Rev. 33(3), 211–259 (2010)

    Article  Google Scholar 

  8. Cabrio, E., Villata, S.: Five years of argument mining: a data-driven analysis. In: IJCAI, vol. 18, pp. 5427–5433 (2018)

    Google Scholar 

  9. Carlile, W., Gurrapadi, N., Ke, Z., Ng, V.: Give me more feedback: annotating argument persuasiveness and related attributes in student essays. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 621–631 (2018)

    Google Scholar 

  10. Demaria, R., et al.: Shuffling-based data augmentation for argument mining. In: CEUR WORKSHOP PROCEEDINGS, pp. 1–17. CEUR (2022)

    Google Scholar 

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  12. Eger, S., Daxenberger, J., Gurevych, I.: Neural end-to-end learning for computational argumentation mining. arXiv preprint arXiv:1704.06104 (2017)

  13. Haaften, T.: Frans H. van Eemeren, Bart Garssen, Erik C.W. Krabbe, A. Francisca Snoeck Henkemans, Bart Verheij and Jean H.M. Wagemans: Handbook of Argumentation Theory. Argumentation 30(3), 345–351 (2015). https://doi.org/10.1007/s10503-015-9381-3

    Article  Google Scholar 

  14. Habernal, I., Gurevych, I.: Argumentation mining in user-generated web discourse. Comput. Linguist. 43(1), 125–179 (2017)

    Article  MathSciNet  Google Scholar 

  15. Hinton, M.: Evaluating the Language of Argument. AL, vol. 37. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61694-6

    Book  Google Scholar 

  16. Kaplan, R.B.: Cultural thought patterns in inter-cultural education. Lang. Learn. 16(1–2), 1–20 (1966)

    Article  Google Scholar 

  17. Mayer, T., Cabrio, E., Villata, S.: Transformer-based argument mining for healthcare applications. In: ECAI 2020, pp. 2108–2115. IOS Press (2020)

    Google Scholar 

  18. Mayer, T., Marro, S., Villata, S., Cabrio, E.: Enhancing evidence-based medicine with natural language argumentative analysis of clinical trials. Artif. Intell. Med. 118, 102098 (2021). https://doi.org/10.1016/j.artmed.2021.102098. https://hal.science/hal-03264761

  19. Miwa, M., Bansal, M.: End-to-end relation extraction using LSTMS on sequences and tree structures. arXiv preprint arXiv:1601.00770 (2016)

  20. Morio, G., Ozaki, H., Morishita, T., Yanai, K.: End-to-end argument mining with cross-corpora multi-task learning. Trans. Assoc. Comput. Linguist. 10, 639–658 (2022)

    Article  Google Scholar 

  21. Palau, R.M., Moens, M.F.: Argumentation mining: the detection, classification and structure of arguments in text. In: Proceedings of the 12th International Conference on Artificial Intelligence and Law, pp. 98–107 (2009)

    Google Scholar 

  22. Peldszus, A., Stede, M.: An annotated corpus of argumentative microtexts. In: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon, vol. 2, pp. 801–815 (2015)

    Google Scholar 

  23. Peldszus, A., Stede, M.: Joint prediction in MST-style discourse parsing for argumentation mining. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 938–948 (2015)

    Google Scholar 

  24. Persing, I., Ng, V.: End-to-end argumentation mining in student essays. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1384–1394 (2016)

    Google Scholar 

  25. Persing, I., Ng, V.: Unsupervised argumentation mining in student essays. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 6795–6803 (2020)

    Google Scholar 

  26. Putra, J.W.G., Teufel, S., Tokunaga, T.: Parsing argumentative structure in English-as-foreign-language essays. In: Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications, pp. 97–109 (2021)

    Google Scholar 

  27. Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning. In: Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky, D. (eds.) Natural Language Processing Using Very Large Corpora. Text, Speech and Language Technology, vol. 11, pp. 157–176. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-2390-9_10

    Chapter  Google Scholar 

  28. Reed, C.: Argument technology for debating with humans (2021)

    Google Scholar 

  29. Reimers, N., Schiller, B., Beck, T., Daxenberger, J., Stab, C., Gurevych, I.: Classification and clustering of arguments with contextualized word embeddings. arXiv preprint arXiv:1906.09821 (2019)

  30. Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive essays. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 46–56 (2014)

    Google Scholar 

  31. Stab, C., Gurevych, I.: Parsing argumentation structures in persuasive essays. Comput. Linguist. 43(3), 619–659 (2017)

    Article  MathSciNet  Google Scholar 

  32. Stab, C., Gurevych, I.: Recognizing insufficiently supported arguments in argumentative essays. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 980–990 (2017)

    Google Scholar 

  33. Stab, C., Miller, T., Gurevych, I.: Cross-topic argument mining from heterogeneous sources using attention-based neural networks. arXiv preprint arXiv:1802.05758 (2018)

  34. Toulmin, S.: The Uses of Argument. Cambridge University Press, Cambridge (1958)

    Google Scholar 

  35. Van Eemeren, F.H., Grootendorst, R., Johnson, R.H., Plantin, C., Willard, C.A.: Fundamentals of Argumentation Theory: A Handbook of Historical Backgrounds and Contemporary Developments. Routledge, Milton Park (2013)

    Google Scholar 

  36. Wachsmuth, H., Al Khatib, K., Stein, B.: Using argument mining to assess the argumentation quality of essays. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 1680–1691 (2016)

    Google Scholar 

  37. Wang, H., Huang, Z., Dou, Y., Hong, Y.: Argumentation mining on essays at multi scales. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 5480–5493 (2020)

    Google Scholar 

  38. Wang, X., Lee, Y., Park, J.: Automated evaluation for student argumentative writing: a survey. arXiv preprint arXiv:2205.04083 (2022)

  39. Yang, X., Bian, J., Hogan, W.R., Wu, Y.: Clinical concept extraction using transformers. J. Am. Med. Inform. Assoc. 27(12), 1935–1942 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Demaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demaria, R., Colla, D., Delsanto, M., Mensa, E., Pasini, E., Radicioni, D.P. (2023). Mining Argument Components in Essays at Different Levels. In: Basili, R., Lembo, D., Limongelli, C., Orlandini, A. (eds) AIxIA 2023 – Advances in Artificial Intelligence. AIxIA 2023. Lecture Notes in Computer Science(), vol 14318. Springer, Cham. https://doi.org/10.1007/978-3-031-47546-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47546-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47545-0

  • Online ISBN: 978-3-031-47546-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics