Predicting the Popularity of YouTube Videos: A Data-Driven Approach | SpringerLink
Skip to main content

Predicting the Popularity of YouTube Videos: A Data-Driven Approach

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2023)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1453))

Included in the following conference series:

  • 664 Accesses

Abstract

This paper presents a data-driven approach to predict the popularity of YouTube videos. The existing conducted studies focus on identifying whether the video is trending currently or after a month of publishing. Where this study aims to leverage a comprehensive dataset of YouTube videos, analyze various features and employ machine-learning techniques to forecast next-hour video popularity accurately. By considering factors such as video metadata and engagement metrics, we develop predictive models that can assist content creators and marketers in understanding the likelihood of a video’s success on the platform. The results demonstrate the efficacy of our approach and provide practical insights into predicting YouTube video popularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://developers.google.com/youtube/v3/docs.

References

  1. Alghanmi, N., Zeng, X.: A hybrid regression model for mixed numerical and categorical data. In: Advances in Computational Intelligence Systems: Contributions Presented at the 19th UK Workshop on Computational Intelligence, September 4–6, 2019, pp. 369–376. Portsmouth, UK 19 (2020)

    Google Scholar 

  2. Andriushchenko, M., Hein, M.: Provably robust boosted decision stumps and trees against adversarial attacks. In: Advances in Neural Information Processing Systems, p. 32 (2019)

    Google Scholar 

  3. Chakraborty, D., Elhegazy, H., Elzarka, H., Gutierrez, L.: A novel construction cost prediction model using hybrid natural and light gradient boosting. Adv. Eng. Inform. 46, 101201 (2020)

    Article  Google Scholar 

  4. Chen, X., Jeong, J.: Enhanced recursive feature elimination. In: Sixth International Conference on Machine Learning and Applications (ICMLA 2007), pp. 429–435 (2007)

    Google Scholar 

  5. Chen, Y., Chang, C.: Early prediction of the future popularity of uploaded videos. Expert Syst. Appl. 133, 59–74 (2019)

    Article  Google Scholar 

  6. Dave, V., Vakharia, V., Singh, S.: Ball bearing fault diagnosis using mutual information and Walsh-Hadamard transform. In: Reliability, Safety and Hazard Assessment for Risk-Based Technologies: Proceedings of ICRESH, vol. 2019, pp. 607–616 (2020)

    Google Scholar 

  7. Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston, B.: The YouTube video recommendation system. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 293–296 (2010)

    Google Scholar 

  8. Drotár, P., Gazda, J., Smékal, Z.: An experimental comparison of feature selection methods on two-class biomedical datasets. Comput. Biol. Med. 66, 1–10 (2015)

    Article  Google Scholar 

  9. Guo, Z., Bai, G.: Application of least squares support vector machine for regression to reliability analysis. Chin. J. Aeronaut. 22, 160–166 (2009)

    Article  Google Scholar 

  10. Halim, Z., Atif, M., Rashid, A., Edwin, C.: Profiling players using real-world datasets: clustering the data and correlating the results with the big-five personality traits. IEEE Trans. Affect. Comput. 10, 568–584 (2017)

    Article  Google Scholar 

  11. Halim, Z., Hussain, S., Ali, R.: Identifying content unaware features influencing popularity of videos on youtube: A study based on seven regions. Expert Syst. Appl. 206, 117836 (2022)

    Article  Google Scholar 

  12. Hong, S., Kim, H.: A comparative study of video recommender systems in big data era. In: 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 125–127 (2016)

    Google Scholar 

  13. Hundi, P., Shahsavari, R.: Comparative studies among machine learning models for performance estimation and health monitoring of thermal power plants. Appl. Energy 265, 114775 (2020)

    Article  Google Scholar 

  14. Hussain, M., Tokdemir, S., Al-Khateeb, S., Bandeli, K., Agarwal, N.: Understanding digital ethnography: socio-computational analysis of trending YouTube videos. In: The Eight International Conference on Social Media Technologies, Communication, and Informatics (2018)

    Google Scholar 

  15. Jiang, B.: Covariance selection by thresholding the sample correlation matrix. Stat. Prob. Lett. 83, 2492–2498 (2013)

    Article  MathSciNet  Google Scholar 

  16. Khaire, U., Dhanalakshmi, R.: Stability of feature selection algorithm: A review. J. King Saud Univ.-Comput. Inf. Sci. 34, 1060–1073 (2022)

    Google Scholar 

  17. Khalil Alsmadi, M., Omar, K., Noah, S., Almarashdah, I.: Performance comparison of multi-layer perceptron (Back Propagation, Delta Rule and Perceptron) algorithms in neural networks. In: 2009 IEEE International Advance Computing Conference, pp. 296–299 (2009)

    Google Scholar 

  18. Kumar, V., Minz, S.: Feature selection: a literature review. SmartCR. 4, 211–229 (2014)

    Google Scholar 

  19. Maulud, D., Abdulazeez, A.: A review on linear regression comprehensive in machine learning. J. Appl. Sci. Technol. Trends 1, 140–147 (2020)

    Article  Google Scholar 

  20. Meseguer-Martinez, A., Ros-Galvez, A., Rosa-Garcia, A.: Linking YouTube and university rankings: Research performance as predictor of online video impact. Telemat. Inf. 43, 101264 (2019)

    Article  Google Scholar 

  21. Nisa, M., Mahmood, D., Ahmed, G., Khan, S., Mohammed, M., Damaševičius, R.: Optimizing prediction of YouTube video popularity using XGBoost. Electronics 10, 2962 (2021)

    Article  Google Scholar 

  22. Pham, B., Jaafari, A., Nguyen-Thoi, T., Van Phong, T., Nguyen, H., Satyam, N., Masroor, M., Rehman, S., Sajjad, H., Sahana, M.: Ensemble machine learning models based on reduced error pruning tree for prediction of rainfall-induced landslides. Int. J. Digit. Earth 14, 575–596 (2021)

    Article  Google Scholar 

  23. Pinto, H., Almeida, J., Gonçalves, M.: Using early view patterns to predict the popularity of youtube videos. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 365–374 (2013)

    Google Scholar 

  24. Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: A review. In: Data Classification: Algorithms and Applications, pp. 37 (2014)

    Google Scholar 

  25. Trzciński, T., Rokita, P.: Predicting popularity of online videos using support vector regression. IEEE Trans. Multimedia 19, 2561–2570 (2017)

    Article  Google Scholar 

  26. Wongsuparatkul, E., Sinthupinyo, S.: View count of online videos prediction using clustering view count patterns with multivariate linear model. In: Proceedings of the 8th International Conference on Computer and Communications Management, pp. 123–129 (2020)

    Google Scholar 

  27. Wu, L., Xiao, Y., Ghosh, M., Zhou, Q., Hao, Q.: Machine learning prediction for bandgaps of inorganic materials. ES Mater. Manufact. 9, 34–39 (2020)

    Google Scholar 

  28. Wu, S., Rizoiu, M., Xie, L.: Beyond views: Measuring and predicting engagement in online videos. In: Proceedings of the International AAAI Conference on Web and Social Media, p. 12 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Aljamea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aljamea, A., Zeng, XJ. (2024). Predicting the Popularity of YouTube Videos: A Data-Driven Approach. In: Naik, N., Jenkins, P., Grace, P., Yang, L., Prajapat, S. (eds) Advances in Computational Intelligence Systems. UKCI 2023. Advances in Intelligent Systems and Computing, vol 1453. Springer, Cham. https://doi.org/10.1007/978-3-031-47508-5_48

Download citation

Publish with us

Policies and ethics