A Conceptual Modeling Approach for Risk Assessment and Mitigation in Collision-Free UAV Routing Planning for Beyond-the-Visual-Line-of-Sight Flights | SpringerLink
Skip to main content

A Conceptual Modeling Approach for Risk Assessment and Mitigation in Collision-Free UAV Routing Planning for Beyond-the-Visual-Line-of-Sight Flights

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14320))

Included in the following conference series:

  • 998 Accesses

Abstract

The domain of beyond-the-visual-line-of-sight (BVLOS) flights of unmanned aerial vehicles (UAVs) has unique navigational challenges such as the reliable estimation, evaluation and mitigation of the risk of the associated flight paths. To tackle these challenges domain data from heterogeneous sources is needed. Failing to integrate this data carefully could result in inaccurate navigation decisions, poor situational awareness, and in general unsafe flight operations. In this paper we present a conceptual model that can be used to design conceptual graph databases that integrate the information of several domains to BVLOS. Furthermore, we show that our proposed conceptual graph database schema scales well for increasing sizes of stored domain and application data and permits constant query execution times for important recurring queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spatial functions - Neo4j cypher manual (2021). https://neo4j.com/docs/cypher-manual/current/functions/spatial/

  2. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., Vrgoč, D.: Foundations of modern query languages for graph databases. ACM Comput. Surv. 50, 1–40 (2017)

    Google Scholar 

  3. Angles, R., et al.: PG-schema: schemas for property graphs. Proc. ACM Manag. Data 1, 198:1–198:25 (2023)

    Google Scholar 

  4. Arterburn, D.R., Ewing, M.S., Prabhu, R., Zhu, F., Francis, D.: FAA UAS center of excellence task A4: UAS ground collision severity evaluation (2017)

    Google Scholar 

  5. Bonifati, A., Furniss, P., Green, A., Harmer, R., Oshurko, E., Voigt, H.: Schema validation and evolution for graph databases. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 448–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_37

    Chapter  Google Scholar 

  6. Clothier, R.A., Williams, B.P., Fulton, N.L.: Structuring the safety case for unmanned aircraft system operations in non-segregated airspace. Saf. Sci. 79, 213–228 (2015)

    Article  Google Scholar 

  7. Cohn, P., Green, A., Langstaff, M., Roller, M.: Commercial drones are here: the future of unmanned aerial systems. McKinsey (2017)

    Google Scholar 

  8. la Cour-Harbo, A.: Quantifying ground impact fatality rate for small unmanned aircraft. J. Intell. Robot. Syst. 93, 367–384 (2019)

    Google Scholar 

  9. la Cour-Harbo, A.: Ground impact probability distribution for small unmanned aircraft in ballistic descent. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1442–1451 (2020)

    Google Scholar 

  10. Gugan, G., Haque, A.: Path planning for autonomous drones: challenges and future directions. Drones 7, 169 (2023)

    Article  Google Scholar 

  11. Hartmann, S., Alshami, J., Ma, H., Steinmetz, D.: A conceptual framework for dynamic planning of alternative routes in road networks. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 539–554. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_40

    Chapter  Google Scholar 

  12. Matalonga, S., White, S., Hartmann, J., Riordan, J.: A review of the legal, regulatory and practical aspects needed to unlock autonomous beyond visual line of sight unmanned aircraft systems operations. J. Intell. Robot. Syst. 106, 10 (2022)

    Article  Google Scholar 

  13. McFadyen, A., Martin, T., Perez, T.: Low-level collision risk modelling for unmanned aircraft integration and management. In: IEEE Aerospace Conference, pp. 1–10 (2018)

    Google Scholar 

  14. Milano, M., Primatesta, S., Guglieri, G.: Air risk maps for unmanned aircraft in urban environments. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1073–1082 (2022)

    Google Scholar 

  15. OpenStreetMap: Bounding box - openstreetmap wiki (2022). https://wiki.openstreetmap.org/w/index.php?title=Bounding_Box &oldid=2386165. Accessed 18 Mar 2023

  16. Ortlieb, M., Konopka, J., Adolf, F.M.: Modular modelling of ground and air risks for unmanned aircraft operations over congested areas. In: AIAA/IEEE Digital Avionics Systems Conference (DASC), pp. 1–9. IEEE (2020)

    Google Scholar 

  17. Primatesta, S., Rizzo, A., la Cour-Harbo, A.: Ground risk map for unmanned aircraft in urban environments. J. Intell. Robot. Syst. 97, 489–509 (2020)

    Google Scholar 

  18. Razzaq, S., Xydeas, C., Everett, M.E., Mahmood, A., Alquthami, T.: Three-dimensional UAV routing with deconfliction. IEEE Access 6, 21536–21551 (2018)

    Article  Google Scholar 

  19. Roberge, V., Tarbouchi, M., Labonte, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. Ind. Inf. 9, 132–141 (2013)

    Article  Google Scholar 

  20. Rubio-Hervas, J., Gupta, A., Ong, Y.S.: Data-driven risk assessment and multicriteria optimization of UAV operations. Aerosp. Sci. Technol. 77, 510–523 (2018)

    Article  Google Scholar 

  21. Schopferer, S., Benders, S.: Minimum-risk path planning for long-range and low-altitude flights of autonomous unmanned aircraft. In: AIAA Scitech Forum, pp. 137:1–137:17 (2020)

    Google Scholar 

  22. StatistischesBundesamt: Regionalatlas Deutschland (2023). https://regionalatlas.statistikportal.de/

  23. Steinmetz, D., Hartmann, S., Ma, H.: A conceptual modelling approach for the discovery and management of platoon routes. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 282–296. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_23

    Chapter  Google Scholar 

  24. Steinmetz, D., Merz, F., Burmester, G., Ma, H., Hartmann, S.: A modeling rule for improving the performance of graph models. In: Ralyte, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds.) Conceptual Modeling. ER 2022. LNCS, vol. 13607, pp. 336–346. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17995-2_24

  25. Veness, C.: Calculate distance and bearing between two latitude/longitude points using haversine formula in Javascript. http://web.archive.org/web/20230223150117/, http://www.movable-type.co.uk/scripts/latlong.html

  26. Yapp, J., Seker, R., Babiceanu, R.: Providing accountability and liability protection for UAV operations beyond visual line of sight. In: IEEE Aerospace Conference, pp. 1–8. IEEE (2018)

    Google Scholar 

  27. Zhang, B., Tang, L., Roemer, M.: Probabilistic weather forecasting analysis for unmanned aerial vehicle path planning. J. Guid. Control Dyn. 37, 309–312 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Burmester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burmester, G., Kugelmann, D., Steinmetz, D., Ma, H., Hartmann, S. (2023). A Conceptual Modeling Approach for Risk Assessment and Mitigation in Collision-Free UAV Routing Planning for Beyond-the-Visual-Line-of-Sight Flights. In: Almeida, J.P.A., Borbinha, J., Guizzardi, G., Link, S., Zdravkovic, J. (eds) Conceptual Modeling. ER 2023. Lecture Notes in Computer Science, vol 14320. Springer, Cham. https://doi.org/10.1007/978-3-031-47262-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47262-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47261-9

  • Online ISBN: 978-3-031-47262-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics