SADIR: Shape-Aware Diffusion Models for 3D Image Reconstruction | SpringerLink
Skip to main content

SADIR: Shape-Aware Diffusion Models for 3D Image Reconstruction

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14350))

Included in the following conference series:

Abstract

3D image reconstruction from a limited number of 2D images has been a long-standing challenge in computer vision and image analysis. While deep learning-based approaches have achieved impressive performance in this area, existing deep networks often fail to effectively utilize the shape structures of objects presented in images. As a result, the topology of reconstructed objects may not be well preserved, leading to the presence of artifacts such as discontinuities, holes, or mismatched connections between different parts. In this paper, we propose a shape-aware network based on diffusion models for 3D image reconstruction, named SADIR, to address these issues. In contrast to previous methods that primarily rely on spatial correlations of image intensities for 3D reconstruction, our model leverages shape priors learned from the training data to guide the reconstruction process. To achieve this, we develop a joint learning network that simultaneously learns a mean shape under deformation models. Each reconstructed image is then considered as a deformed variant of the mean shape. We validate our model, SADIR, on both brain and cardiac magnetic resonance images (MRIs). Experimental results show that our method outperforms the baselines with lower reconstruction error and better preservation of the shape structure of objects within the images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7549
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, V.: Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier 16, 319–361 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  3. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61(2), 139–157 (2005)

    Article  MATH  Google Scholar 

  4. Bruse, J.L., et al.: Detecting clinically meaningful shape clusters in medical image data: metrics analysis for hierarchical clustering applied to healthy and pathological aortic arches. IEEE Trans. Biomed. Eng. 64(10), 2373–2383 (2017)

    Article  Google Scholar 

  5. Cetin, I., Stephens, M., Camara, O., Ballester, M.A.G.: Attri-VAE: attribute-based interpretable representations of medical images with variational autoencoders. Comput. Med. Imaging Graph. 104, 102158 (2023)

    Article  Google Scholar 

  6. Chen, C., Biffi, C., Tarroni, G., Petersen, S., Bai, W., Rueckert, D.: Learning shape priors for robust cardiac MR segmentation from multi-view images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 523–531. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_58

    Chapter  Google Scholar 

  7. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)

    Article  Google Scholar 

  8. Chung, H., Ryu, D., McCann, M.T., Klasky, M.L., Ye, J.C.: Solving 3D inverse problems using pre-trained 2D diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22542–22551 (2023)

    Google Scholar 

  9. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D u-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  10. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  11. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  12. Duwek, H.C., Bitton, A., Tsur, E.E.: 3D object tracking with neuromorphic event cameras via image reconstruction. In: 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE (2021)

    Google Scholar 

  13. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network, November 2012

    Google Scholar 

  14. Feng, C.-M., Yan, Y., Fu, H., Chen, L., Xu, Y.: Task transformer network for joint MRI reconstruction and super-resolution. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 307–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_30

    Chapter  Google Scholar 

  15. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  16. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  17. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks (2019)

    Google Scholar 

  18. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Article  Google Scholar 

  19. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44, 223–270 (1908)

    Google Scholar 

  20. Jiang, J., Veeraraghavan, H.: One shot pacs: patient specific anatomic context and shape prior aware recurrent registration-segmentation of longitudinal thoracic cone beam CTs. IEEE Trans. Med. Imaging 41(8), 2021–2032 (2022)

    Article  Google Scholar 

  21. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23, S151–S160 (2004)

    Article  Google Scholar 

  22. Korkmaz, Y., Dar, S.U., Yurt, M., Özbey, M., Cukur, T.: Unsupervised MRI reconstruction via zero-shot learned adversarial transformers. IEEE Trans. Med. Imaging 41(7), 1747–1763 (2022)

    Article  Google Scholar 

  23. LaMontagne, P.J., et al.: Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. medRxiv (2019)

    Google Scholar 

  24. Li, J.: Medshapenet: a large-scale dataset of 3D medical shapes for computer vision, March 2023

    Google Scholar 

  25. Lin, D.J., Johnson, P.M., Knoll, F., Lui, Y.W.: Artificial intelligence for MR image reconstruction: an overview for clinicians. J. Magn. Reson. Imaging 53(4), 1015–1028 (2021)

    Article  Google Scholar 

  26. Liu, J., Aviles-Rivero, A.I., Ji, H., Schönlieb, C.-B.: Rethinking medical image reconstruction via shape prior, going deeper and faster: Deep joint indirect registration and reconstruction. Med. Image Anal. 68, 101930 (2021)

    Article  Google Scholar 

  27. Maaløe, L., Fraccaro, M., Liévin, V., Winther, O.: Biva: a very deep hierarchy of latent variables for generative modeling. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  28. Maier-Hein, L., et al.: Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery. Med. Image Anal. 17(8), 974–996 (2013)

    Article  Google Scholar 

  29. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vision 24(2), 209–228 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nguyen, T., Hua, B.-S., Le, N.: 3D-UCaps: 3D capsules Unet for volumetric image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 548–558. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_52

    Chapter  Google Scholar 

  31. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  32. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2018)

    Article  Google Scholar 

  33. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  34. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)

    Article  Google Scholar 

  35. Vialard, F.-X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vision 97(2), 229–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. von Tycowicz, C., Ambellan, F., Mukhopadhyay, A., Zachow, S.: An efficient Riemannian statistical shape model using differential coordinates: with application to the classification of data from the osteoarthritis initiative. Med. Image Anal. 43, 1–9 (2018)

    Article  Google Scholar 

  37. Waibel, D.J.E., Röell, E., Rieck, B., Giryes, R., Marr, C.: A diffusion model predicts 3D shapes from 2D microscopy images (2023)

    Google Scholar 

  38. Wang, J., Zhang, M.: Bayesian atlas building with hierarchical priors for subject-specific regularization. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 76–86. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_8

    Chapter  Google Scholar 

  39. Wang, J., Zhang, M.: Geo-sic: learning deformable geometric shapes in deep image classifiers. In: Advances in Neural Information Processing Systems, vol. 35, pp. 27994–28007 (2022)

    Google Scholar 

  40. Wells, W.M., III., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)

    Article  Google Scholar 

  41. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 35–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4

    Chapter  Google Scholar 

  42. Wu, N., Wang, J., Zhang, M., Zhang, G., Peng, Y., Shen, C.: Hybrid atlas building with deep registration priors. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

  43. Yang, J., Wickramasinghe, U., Ni, B., Fua, P.: Implicitatlas: learning deformable shape templates in medical imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15861–15871 (2022)

    Google Scholar 

  44. Zelenskii, A., Gapon, N., Voronin, V., Semenishchev, E., Serebrenny, V., Cen, Y.: Robot navigation using modified slam procedure based on depth image reconstruction. In: Artificial Intelligence and Machine Learning in Defense Applications III, vol. 11870, pp. 73–82. SPIE (2021)

    Google Scholar 

  45. Zhang, M., Singh, N., Fletcher, P.T.: Bayesian estimation of regularization and atlas building in diffeomorphic image registration. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 37–48. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_4

    Chapter  Google Scholar 

  46. Zhang, M., Wells, W.M., Golland, P.: Low-dimensional statistics of anatomical variability via compact representation of image deformations. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 166–173. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_20

    Chapter  Google Scholar 

  47. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by NSF CAREER Grant 2239977 and NIH 1R21EB032597.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nivetha Jayakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jayakumar, N., Hossain, T., Zhang, M. (2023). SADIR: Shape-Aware Diffusion Models for 3D Image Reconstruction. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46914-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46913-8

  • Online ISBN: 978-3-031-46914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics