Abstract
3D image reconstruction from a limited number of 2D images has been a long-standing challenge in computer vision and image analysis. While deep learning-based approaches have achieved impressive performance in this area, existing deep networks often fail to effectively utilize the shape structures of objects presented in images. As a result, the topology of reconstructed objects may not be well preserved, leading to the presence of artifacts such as discontinuities, holes, or mismatched connections between different parts. In this paper, we propose a shape-aware network based on diffusion models for 3D image reconstruction, named SADIR, to address these issues. In contrast to previous methods that primarily rely on spatial correlations of image intensities for 3D reconstruction, our model leverages shape priors learned from the training data to guide the reconstruction process. To achieve this, we develop a joint learning network that simultaneously learns a mean shape under deformation models. Each reconstructed image is then considered as a deformed variant of the mean shape. We validate our model, SADIR, on both brain and cardiac magnetic resonance images (MRIs). Experimental results show that our method outperforms the baselines with lower reconstruction error and better preservation of the shape structure of objects within the images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnold, V.: Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier 16, 319–361 (1966)
Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)
Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61(2), 139–157 (2005)
Bruse, J.L., et al.: Detecting clinically meaningful shape clusters in medical image data: metrics analysis for hierarchical clustering applied to healthy and pathological aortic arches. IEEE Trans. Biomed. Eng. 64(10), 2373–2383 (2017)
Cetin, I., Stephens, M., Camara, O., Ballester, M.A.G.: Attri-VAE: attribute-based interpretable representations of medical images with variational autoencoders. Comput. Med. Imaging Graph. 104, 102158 (2023)
Chen, C., Biffi, C., Tarroni, G., Petersen, S., Bai, W., Rueckert, D.: Learning shape priors for robust cardiac MR segmentation from multi-view images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 523–531. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_58
Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)
Chung, H., Ryu, D., McCann, M.T., Klasky, M.L., Ye, J.C.: Solving 3D inverse problems using pre-trained 2D diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22542–22551 (2023)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D u-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Duwek, H.C., Bitton, A., Tsur, E.E.: 3D object tracking with neuromorphic event cameras via image reconstruction. In: 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE (2021)
Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network, November 2012
Feng, C.-M., Yan, Y., Fu, H., Chen, L., Xu, Y.: Task transformer network for joint MRI reconstruction and super-resolution. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 307–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_30
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)
Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks (2019)
Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)
Jaccard, P.: Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44, 223–270 (1908)
Jiang, J., Veeraraghavan, H.: One shot pacs: patient specific anatomic context and shape prior aware recurrent registration-segmentation of longitudinal thoracic cone beam CTs. IEEE Trans. Med. Imaging 41(8), 2021–2032 (2022)
Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23, S151–S160 (2004)
Korkmaz, Y., Dar, S.U., Yurt, M., Özbey, M., Cukur, T.: Unsupervised MRI reconstruction via zero-shot learned adversarial transformers. IEEE Trans. Med. Imaging 41(7), 1747–1763 (2022)
LaMontagne, P.J., et al.: Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. medRxiv (2019)
Li, J.: Medshapenet: a large-scale dataset of 3D medical shapes for computer vision, March 2023
Lin, D.J., Johnson, P.M., Knoll, F., Lui, Y.W.: Artificial intelligence for MR image reconstruction: an overview for clinicians. J. Magn. Reson. Imaging 53(4), 1015–1028 (2021)
Liu, J., Aviles-Rivero, A.I., Ji, H., Schönlieb, C.-B.: Rethinking medical image reconstruction via shape prior, going deeper and faster: Deep joint indirect registration and reconstruction. Med. Image Anal. 68, 101930 (2021)
Maaløe, L., Fraccaro, M., Liévin, V., Winther, O.: Biva: a very deep hierarchy of latent variables for generative modeling. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Maier-Hein, L., et al.: Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery. Med. Image Anal. 17(8), 974–996 (2013)
Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vision 24(2), 209–228 (2006)
Nguyen, T., Hua, B.-S., Le, N.: 3D-UCaps: 3D capsules Unet for volumetric image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 548–558. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_52
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999). https://doi.org/10.1007/978-0-387-40065-5
Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)
Vialard, F.-X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vision 97(2), 229–241 (2012)
von Tycowicz, C., Ambellan, F., Mukhopadhyay, A., Zachow, S.: An efficient Riemannian statistical shape model using differential coordinates: with application to the classification of data from the osteoarthritis initiative. Med. Image Anal. 43, 1–9 (2018)
Waibel, D.J.E., Röell, E., Rieck, B., Giryes, R., Marr, C.: A diffusion model predicts 3D shapes from 2D microscopy images (2023)
Wang, J., Zhang, M.: Bayesian atlas building with hierarchical priors for subject-specific regularization. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 76–86. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_8
Wang, J., Zhang, M.: Geo-sic: learning deformable geometric shapes in deep image classifiers. In: Advances in Neural Information Processing Systems, vol. 35, pp. 27994–28007 (2022)
Wells, W.M., III., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)
Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 35–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4
Wu, N., Wang, J., Zhang, M., Zhang, G., Peng, Y., Shen, C.: Hybrid atlas building with deep registration priors. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)
Yang, J., Wickramasinghe, U., Ni, B., Fua, P.: Implicitatlas: learning deformable shape templates in medical imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15861–15871 (2022)
Zelenskii, A., Gapon, N., Voronin, V., Semenishchev, E., Serebrenny, V., Cen, Y.: Robot navigation using modified slam procedure based on depth image reconstruction. In: Artificial Intelligence and Machine Learning in Defense Applications III, vol. 11870, pp. 73–82. SPIE (2021)
Zhang, M., Singh, N., Fletcher, P.T.: Bayesian estimation of regularization and atlas building in diffeomorphic image registration. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 37–48. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_4
Zhang, M., Wells, W.M., Golland, P.: Low-dimensional statistics of anatomical variability via compact representation of image deformations. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 166–173. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_20
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Acknowledgement
This work was supported by NSF CAREER Grant 2239977 and NIH 1R21EB032597.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jayakumar, N., Hossain, T., Zhang, M. (2023). SADIR: Shape-Aware Diffusion Models for 3D Image Reconstruction. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-46914-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46913-8
Online ISBN: 978-3-031-46914-5
eBook Packages: Computer ScienceComputer Science (R0)