Multi-head Similarity Feature Representation and Filtration for Image-Text Matching | SpringerLink
Skip to main content

Multi-head Similarity Feature Representation and Filtration for Image-Text Matching

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14177))

Included in the following conference series:

  • 1029 Accesses

Abstract

The field of multimedia analysis has been increasingly focused on image-text retrieval, which aims to retrieve semantically relevant images or text through queries of the opposite modality. The key challenge is to learn the correspondence between images and text. Existing methods have focused on processing inter-modality information interaction but have not given sufficient attention to learning the correspondence between the two modalities during this process. However, these methods have a low accurate image-text matching due to they are not deal with the noise during the process of the visual and textual representations. To avoid the noise in the training process, we propose a novel Multi-head Similarity Feature Representation and Filtration (MSFRF) approach for image-text matching. The proposed MSFRF method captures the detailed associations of feature representations from different modalities and reduces the interference of noisy information in the extracted features for improving the performance of matching. Extensive experiments on two benchmark datasets show that the proposed MSFRF method outperforms the state-of-the-art image-text matching methods.

M. Jiang, D. Cheng—Contributed equally to this work and should be considered co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6077–6086 (2018)

    Google Scholar 

  2. Chen, H., Ding, G., Liu, X., Lin, Z., Liu, J., Han, J.: Imram: Iterative matching with recurrent attention memory for cross-modal image-text retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12655–12663 (2020)

    Google Scholar 

  3. Chen, J., Hu, H., Wu, H., Jiang, Y., Wang, C.: Learning the best pooling strategy for visual semantic embedding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15789–15798 (2021)

    Google Scholar 

  4. Cheng, D., Zhang, S., Liu, X., Sun, K., Zong, M.: Feature selection by combining subspace learning with sparse representation. Multimedia Syst. 23, 285–291 (2017)

    Article  Google Scholar 

  5. Cui, Z., Hu, Y., Sun, Y., Gao, J., Yin, B.: Cross-modal alignment with graph reasoning for image-text retrieval. Multimed. Tools Appl. 81(17), 23615–23632 (2022)

    Article  Google Scholar 

  6. Faghri, F., Fleet, D.J., Kiros, J.R., Fidler, S.: VSE++: Improving visual-semantic embeddings with hard negatives. arXiv preprint arXiv:1707.05612 (2017)

  7. Hu, R., et al.: Low-rank feature selection for multi-view regression. Multimed. Tools Appl. 76, 17479–17495 (2017)

    Article  Google Scholar 

  8. Huang, F., Zhang, X., Zhao, Z., Li, Z.: Bi-directional spatial-semantic attention networks for image-text matching. IEEE Trans. Image Process. 28(4), 2008–2020 (2018)

    Article  MathSciNet  Google Scholar 

  9. Ji, Z., Chen, K., Wang, H.: Step-wise hierarchical alignment network for image-text matching. arXiv preprint arXiv:2106.06509 (2021)

  10. Kalibhat, N.M., Narang, K., Tan, L., Firooz, H., Sanjabi, M., Feizi, S.: Understanding failure modes of self-supervised learning. arXiv preprint arXiv:2203.01881 (2022)

  11. Kiros, R., Salakhutdinov, R., Zemel, R.S.: Unifying visual-semantic embeddings with multimodal neural language models. arXiv preprint arXiv:1411.2539 (2014)

  12. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123, 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  13. Lee, J., et al.: Uniclip: Unified framework for contrastive language-image pre-training. In: 36th Conference on Neural Information Processing Systems, NeurIPS 2022. Neural information processing systems foundation (2022)

    Google Scholar 

  14. Lee, K.H., Chen, X., Hua, G., Hu, H., He, X.: Stacked cross attention for image-text matching. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 201–216 (2018)

    Google Scholar 

  15. Li, K., Zhang, Y., Li, K., Li, Y., Fu, Y.: Visual semantic reasoning for image-text matching. In: Proceedings of the IEEE/CVF International Conference On Computer Vision, pp. 4654–4662 (2019)

    Google Scholar 

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Liu, C., Mao, Z., Liu, A.A., Zhang, T., Wang, B., Zhang, Y.: Focus your attention: a bidirectional focal attention network for image-text matching. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 3–11 (2019)

    Google Scholar 

  18. Liu, C., Mao, Z., Zhang, T., Xie, H., Wang, B., Zhang, Y.: Graph structured network for image-text matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10921–10930 (2020)

    Google Scholar 

  19. Liu, Y., Guo, Y., Bakker, E.M., Lew, M.S.: Learning a recurrent residual fusion network for multimodal matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4107–4116 (2017)

    Google Scholar 

  20. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stanford corenlp natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  21. Nam, H., Ha, J.W., Kim, J.: Dual attention networks for multimodal reasoning and matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 299–307 (2017)

    Google Scholar 

  22. Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2641–2649 (2015)

    Google Scholar 

  23. Qu, L., Liu, M., Cao, D., Nie, L., Tian, Q.: Context-aware multi-view summarization network for image-text matching. In: Proceedings of the 28th ACM International Conference On Multimedia, pp. 1047–1055 (2020)

    Google Scholar 

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  25. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  26. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al.: Graph attention networks. stat 1050(20), 10–48550 (2017)

    Google Scholar 

  27. Vendrov, I., Kiros, R., Fidler, S., Urtasun, R.: Order-embeddings of images and language. arXiv preprint arXiv:1511.06361 (2015)

  28. Wang, L., Li, Y., Lazebnik, S.: Learning deep structure-preserving image-text embeddings. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5005–5013 (2016)

    Google Scholar 

  29. Wang, S., Wang, R., Yao, Z., Shan, S., Chen, X.: Cross-modal scene graph matching for relationship-aware image-text retrieval. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1508–1517 (2020)

    Google Scholar 

  30. Wang, Y., et al.: Position focused attention network for image-text matching. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 3792–3798 (2019)

    Google Scholar 

  31. Wang, Y., et al.: Wasserstein coupled graph learning for cross-modal retrieval. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1793–1802. IEEE (2021)

    Google Scholar 

  32. Wei, X., Zhang, T., Li, Y., Zhang, Y., Wu, F.: Multi-modality cross attention network for image and sentence matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10941–10950 (2020)

    Google Scholar 

  33. Yu, R., Jin, F., Qiao, Z., Yuan, Y., Wang, G.: Multi-scale image-text matching network for scene and spatio-temporal images. Future Gen. Comput. Syst. 142, 292–300 (2023)

    Google Scholar 

  34. Zhang, S., Yang, L., Deng, Z., Cheng, D., Li, Y.: Leverage triple relational structures via low-rank feature reduction for multi-output regression. Multimed. Tools Appl. 76, 17461–17477 (2017)

    Article  Google Scholar 

  35. Zhu, L., Xu, Z., Yang, Y.: Bidirectional multirate reconstruction for temporal modeling in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2653–2662 (2017)

    Google Scholar 

Download references

Acknowledgment

This research was supported in part by the Project of Guangxi Science and Technology (GuiKeAB23026040), the Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (MIMS20-04), and the Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security 20-A-01-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, M., Zhang, S., Cheng, D., Zhang, L., Zhang, G. (2023). Multi-head Similarity Feature Representation and Filtration for Image-Text Matching. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14177. Springer, Cham. https://doi.org/10.1007/978-3-031-46664-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46664-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46663-2

  • Online ISBN: 978-3-031-46664-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics